Answer:
<u>Part 1) </u>
Part a)
Part b)
(three different ways in the procedure)
<u>Part 2)</u>
First triangle (triangle a)
Part a)
Part b) ![A=35.11\°](https://tex.z-dn.net/?f=A%3D35.11%5C%C2%B0)
Part c) ![B=129.89\°](https://tex.z-dn.net/?f=B%3D129.89%5C%C2%B0)
Second triangle (triangle b)
Part a)
Part b) ![AC=10.77\ units](https://tex.z-dn.net/?f=AC%3D10.77%5C%20units)
Part c)
Step-by-step explanation:
Part 1)
<u>Part A</u>
we know that
In the right triangle ABC
we have
![B=25\°](https://tex.z-dn.net/?f=B%3D25%5C%C2%B0)
![AC=b\ units](https://tex.z-dn.net/?f=AC%3Db%5C%20units)
![AB=25\ units](https://tex.z-dn.net/?f=AB%3D25%5C%20units)
Substitute and solve for b
![sin(25\°)=\frac{b}{25}](https://tex.z-dn.net/?f=sin%2825%5C%C2%B0%29%3D%5Cfrac%7Bb%7D%7B25%7D)
<u>Part B</u>
First way
we know that
In the right triangle ABC
![cos(B)=\frac{BC}{AB}](https://tex.z-dn.net/?f=cos%28B%29%3D%5Cfrac%7BBC%7D%7BAB%7D)
we have
![B=25\°](https://tex.z-dn.net/?f=B%3D25%5C%C2%B0)
![BC=a\ units](https://tex.z-dn.net/?f=BC%3Da%5C%20units)
![AB=25\ units](https://tex.z-dn.net/?f=AB%3D25%5C%20units)
Substitute and solve for a
![cos(25\°)=\frac{a}{25}](https://tex.z-dn.net/?f=cos%2825%5C%C2%B0%29%3D%5Cfrac%7Ba%7D%7B25%7D)
Second way
Applying the Pythagoras theorem
![c^{2}=a^{2} +b^{2}](https://tex.z-dn.net/?f=c%5E%7B2%7D%3Da%5E%7B2%7D%20%2Bb%5E%7B2%7D)
we have
![c=25\ units](https://tex.z-dn.net/?f=c%3D25%5C%20units)
![b=10.57\ units](https://tex.z-dn.net/?f=b%3D10.57%5C%20units)
substitute and solve for a
![25^{2}=a^{2} +10.57^{2}](https://tex.z-dn.net/?f=25%5E%7B2%7D%3Da%5E%7B2%7D%20%2B10.57%5E%7B2%7D)
![a^{2}=25^{2}-10.57^{2}](https://tex.z-dn.net/?f=a%5E%7B2%7D%3D25%5E%7B2%7D-10.57%5E%7B2%7D)
![a=22.66\ units[](https://tex.z-dn.net/?f=a%3D22.66%5C%20units%5B)
Third way
we know that
In the right triangle ABC
![tan(B)=\frac{AC}{BC}](https://tex.z-dn.net/?f=tan%28B%29%3D%5Cfrac%7BAC%7D%7BBC%7D)
we have
![B=25\°](https://tex.z-dn.net/?f=B%3D25%5C%C2%B0)
![BC=a\ units](https://tex.z-dn.net/?f=BC%3Da%5C%20units)
![AC=b=10.57\ units](https://tex.z-dn.net/?f=AC%3Db%3D10.57%5C%20units)
substitute and solve for a
![tan(25\°)=\frac{10.57}{a}\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units](https://tex.z-dn.net/?f=tan%2825%5C%C2%B0%29%3D%5Cfrac%7B10.57%7D%7Ba%7D%5C%5C%20%5C%5Ca%3D10.57%2F%20tan%2825%5C%C2%B0%29%5C%5C%20%5C%5Ca%3D22.66%5C%20units)
Part 2)
<u> triangle a</u>
we have
![C=15\°](https://tex.z-dn.net/?f=C%3D15%5C%C2%B0)
Step 1
<u>Find the measure of length side c</u>
Applying the law of cosines
substitute
Step 2
<u>Find the measure of angle A</u>
Applying the law of sines
![\frac{a}{sin(A)}=\frac{c}{sin(C)}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%28A%29%7D%3D%5Cfrac%7Bc%7D%7Bsin%28C%29%7D)
we have
![a=3\ units](https://tex.z-dn.net/?f=a%3D3%5C%20units)
![C=15\°](https://tex.z-dn.net/?f=C%3D15%5C%C2%B0)
substitute and solve for A
Step 3
<u>Find the measure of angle B</u>
Remember that the sum of the internal angles of a triangle must be equal to
degrees
so
![A+B+C=180\°](https://tex.z-dn.net/?f=A%2BB%2BC%3D180%5C%C2%B0)
we have
![C=15\°](https://tex.z-dn.net/?f=C%3D15%5C%C2%B0)
![A=35.11\°](https://tex.z-dn.net/?f=A%3D35.11%5C%C2%B0)
substitute
<u> triangle b</u>
we have
![C=52\°](https://tex.z-dn.net/?f=C%3D52%5C%C2%B0)
![B=45\°](https://tex.z-dn.net/?f=B%3D45%5C%C2%B0)
Step 1
<u>Find the measure of angle A</u>
Remember that the sum of the internal angles of a triangle must be equal to
degrees
so
![A+B+C=180\°](https://tex.z-dn.net/?f=A%2BB%2BC%3D180%5C%C2%B0)
we have
![C=52\°](https://tex.z-dn.net/?f=C%3D52%5C%C2%B0)
![B=45\°](https://tex.z-dn.net/?f=B%3D45%5C%C2%B0)
substitute
Step 2
<u>Find the measure of side AC</u>
Applying the law of sines
![\frac{b}{sin(B)}=\frac{c}{sin(C)}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Bsin%28B%29%7D%3D%5Cfrac%7Bc%7D%7Bsin%28C%29%7D)
we have
![b=AC](https://tex.z-dn.net/?f=b%3DAC)
![c=12\ units](https://tex.z-dn.net/?f=c%3D12%5C%20units)
![B=45\°](https://tex.z-dn.net/?f=B%3D45%5C%C2%B0)
![C=52\°](https://tex.z-dn.net/?f=C%3D52%5C%C2%B0)
substitute and solve for b
![\frac{b}{sin(45\°)}=\frac{12}{sin(52\°)}\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Bsin%2845%5C%C2%B0%29%7D%3D%5Cfrac%7B12%7D%7Bsin%2852%5C%C2%B0%29%7D%5C%5C%20%5C%5Cb%3D12%2Asin%28%2045%5C%C2%B0%29%2Fsin%28%2052%5C%C2%B0%29%5C%5C%20%5C%5Cb%3D10.77%5C%20units)
Step 3
<u>Find the measure of side BC</u>
Applying the law of sines
![\frac{a}{sin(A)}=\frac{c}{sin(C)}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%28A%29%7D%3D%5Cfrac%7Bc%7D%7Bsin%28C%29%7D)
we have
![a=BC](https://tex.z-dn.net/?f=a%3DBC)
![c=12\ units](https://tex.z-dn.net/?f=c%3D12%5C%20units)
![A=83\°](https://tex.z-dn.net/?f=A%3D83%5C%C2%B0)
![C=52\°](https://tex.z-dn.net/?f=C%3D52%5C%C2%B0)
substitute and solve for a
![\frac{a}{sin(83\°)}=\frac{12}{sin(52\°)}\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%2883%5C%C2%B0%29%7D%3D%5Cfrac%7B12%7D%7Bsin%2852%5C%C2%B0%29%7D%5C%5C%20%5C%5Ca%3D12%2Asin%2883%5C%C2%B0%29%2Fsin%2852%5C%C2%B0%29%5C%5C%20%5C%5Ca%3D15.11%5C%20units)