1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
7

1. Consider the right triangle ABC given below.

Mathematics
2 answers:
babunello [35]3 years ago
7 0

Answer:

<u>Part 1) </u>

Part a) b=10.57\ units

Part b) a=22.66\ units (three different ways in the procedure)

<u>Part 2)</u>

First triangle (triangle a)

Part a) c=1.35\ units  

Part b) A=35.11\°

Part c) B=129.89\°

Second triangle  (triangle b)

Part a) A=83\°      

Part b) AC=10.77\ units

Part c) BC=15.11\ units  

Step-by-step explanation:

Part 1)

<u>Part A</u>

we know that

In the right triangle ABC

sin(B)=\frac{AC}{AB}  

we have

B=25\°

AC=b\ units

AB=25\ units

Substitute and solve for b

sin(25\°)=\frac{b}{25}

b=25*sin(25\°)=10.57\ units

<u>Part B</u>

First way

we know that

In the right triangle ABC

cos(B)=\frac{BC}{AB}

we have

B=25\°

BC=a\ units

AB=25\ units

Substitute and solve for a

cos(25\°)=\frac{a}{25}

a=25*cos(25\°)=22.66\ units

Second way

Applying the Pythagoras theorem

c^{2}=a^{2} +b^{2}

we have

c=25\ units

b=10.57\ units

substitute and solve for a

25^{2}=a^{2} +10.57^{2}

a^{2}=25^{2}-10.57^{2}

a=22.66\ units[

Third way

we know that

In the right triangle ABC

tan(B)=\frac{AC}{BC}

we have

B=25\°

BC=a\ units

AC=b=10.57\ units

substitute and solve for a

tan(25\°)=\frac{10.57}{a}\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units

Part 2)

<u> triangle a</u>

we have

C=15\°

a=3\ units  

b=4\ units  

Step 1

<u>Find the measure of length side c</u>

Applying the law of cosines

c^{2}=a^{2}+b^{2}-2(a)(b)cos(C)  

substitute

c^{2}=3^{2}+4^{2}-2(3)(4)cos(15\°)    

c^{2}=25-24cos(15\°)  

c=1.35\ units    

Step 2

<u>Find the measure of angle A</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=3\ units

c=1.35\ units

C=15\°

substitute and solve for A

\frac{3}{sin(A)}=\frac{1.35}{sin(15\°)}\\ \\sin(A)=3*sin(15\°)/1.35\\ \\sin(A)=0.5752\\ \\A=35.11\°

Step 3

<u>Find the measure of angle B</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=15\°

A=35.11\°

substitute

B=180\°-35.11\°-15\°=129.89\°      

<u> triangle b</u>

we have

C=52\°

B=45\°

c=12\ units  


Step 1  

<u>Find the measure of angle A</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=52\°

B=45\°

substitute

A=180\°-52\°-45\°=83\°    

Step 2

<u>Find the measure of side AC</u>

Applying the law of sines

\frac{b}{sin(B)}=\frac{c}{sin(C)}

we have

b=AC

c=12\ units

B=45\°

C=52\°

substitute and solve for b

\frac{b}{sin(45\°)}=\frac{12}{sin(52\°)}\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units

Step 3

<u>Find the measure of side BC</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=BC

c=12\ units

A=83\°

C=52\°

substitute and solve for a

\frac{a}{sin(83\°)}=\frac{12}{sin(52\°)}\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units


lbvjy [14]3 years ago
3 0
#1) 
A) b = 10.57
B) a = 22.66; the different methods are shown below.
#2)
A) Let a = the side opposite the 15° angle; a = 1.35.
Let B = the angle opposite the side marked 4; m∠B = 50.07°.
Let C = the angle opposite the side marked 3; m∠C = 114.93°.
B) b = 10.77
m∠A = 83°
a = 15.11

Explanation
#1)
A) We know that the sine ratio is opposite/hypotenuse.  The side opposite the 25° angle is b, and the hypotenuse is 25:
sin 25 = b/25

Multiply both sides by 25:
25*sin 25 = (b/25)*25
25*sin 25 = b
10.57 = b

B) The first way we can find a is using the Pythagorean theorem.  In Part A above, we found the length of b, the other leg of the triangle, and we know the measure of the hypotenuse:
a²+(10.57)² = 25²
a²+111.7249 = 625

Subtract 111.7249 from both sides:
a²+111.7249 - 111.7249 = 625 - 111.7249
a² = 513.2751

Take the square root of both sides:
√a² = √513.2751
a = 22.66

The second way is using the cosine ratio, adjacent/hypotenuse.  Side a is adjacent to the 25° angle, and the hypotenuse is 25:
cos 25 = a/25

Multiply both sides by 25:
25*cos 25 = (a/25)*25
25*cos 25 = a
22.66 = a

The third way is using the other angle.  First, find the measure of angle A by subtracting the other two angles from 180:
m∠A = 180-(90+25) = 180-115 = 65°

Side a is opposite ∠A; opposite/hypotenuse is the sine ratio:
a/25 = sin 65

Multiply both sides by 25:
(a/25)*25 = 25*sin 65
a = 25*sin 65
a = 22.66

#2)
A) Let side a be the one across from the 15° angle.  This would make the 15° angle ∠A.  We will define b as the side marked 4 and c as the side marked 3.  We will use the law of cosines:
a² = b²+c²-2bc cos A
a² = 4²+3²-2(4)(3)cos 15
a² = 16+9-24cos 15
a² = 25-24cos 15
a² = 1.82

Take the square root of both sides:
√a² = √1.82
a = 1.35

Use the law of sines to find m∠B:
sin A/a = sin B/b
sin 15/1.35 = sin B/4

Cross multiply:
4*sin 15 = 1.35*sin B

Divide both sides by 1.35:
(4*sin 15)/1.35 = (1.35*sin B)/1.35
(4*sin 15)/1.35 = sin B

Take the inverse sine of both sides:
sin⁻¹((4*sin 15)/1.35) = sin⁻¹(sin B)
50.07 = B

Subtract both known angles from 180 to find m∠C:
180-(15+50.07) = 180-65.07 = 114.93°

B)  Use the law of sines to find side b:
sin C/c = sin B/b
sin 52/12 = sin 45/b

Cross multiply:
b*sin 52 = 12*sin 45

Divide both sides by sin 52:
(b*sin 52)/(sin 52) = (12*sin 45)/(sin 52)
b = 10.77

Find m∠A by subtracting both known angles from 180:
180-(52+45) = 180-97 = 83°

Use the law of sines to find side a:
sin C/c = sin A/a
sin 52/12 = sin 83/a

Cross multiply:
a*sin 52 = 12*sin 83

Divide both sides by sin 52:
(a*sin 52)/(sin 52) = (12*sin 83)/(sin 52)
a = 15.11
You might be interested in
- Last week Shelley earned $60.00 in tips waitressing. This week she earned $72.00.
castortr0y [4]

Answer: 20%

Step-by-step explanation:

Rule of 3, let's put the money on the left and the percentage on the right of the chart.

\frac{60.00}{72.00}=\frac{100}{x}

x=\frac{72*100}{60} \\x=120

Calculate the difference.

120-100=20

5 0
3 years ago
Read 2 more answers
I need to know how to get the scale factor from a h-shaped polygon
Lesechka [4]
“To find the scale factor, we simply create a ratio of the lengths of two corresponding sides of two polygons. If the ratio is the same for all corresponding sides, then this is called the scale factor and the polygons are similar.”
5 0
3 years ago
Carson evaluated 23÷34 and got an answer of 89. Which statement is true about his answer?
Tomtit [17]
23÷34 = 0.6764705882352941. totally answer

6 0
3 years ago
A card is randomly selected from a standard
Anni [7]

Answer:

5.8% or 6%

Step-by-step explanation:

6 face cards in a deck minus the red ones so it would be [6-3=3]

52 cards are in a deck and you have 3 black face card so it would be [3/52=0.0576]

Then to get your percentage it would be [0.0576 x 100=5.76%]

5.76 rounded up is 6%

6 0
3 years ago
11. Given the information, write the appropriate equation for:
DENIUS [597]

Answer:6776.78

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • How do you do this problem?
    5·2 answers
  • Suppose you have the 26 letters of the alphabet on separate cards in a hat. You pick out a card, write down the letter, put the
    7·1 answer
  • you pick one card from a standard deck.What is the probability that the card will be one of the clubs suit?
    10·1 answer
  • If 9x+2y^2−3z^2=132 and 9y−2y^2+3z^2=867, then x+y =
    8·1 answer
  • Can someone help me plz ​
    5·1 answer
  • What is the area of this triangle in square units? 10 &amp; 7
    9·2 answers
  • 1. You and your friend are going to Boston but
    6·1 answer
  • Please help I can’t figure it out
    15·1 answer
  • Pls I don’t know what to do
    12·2 answers
  • Help me!!!!Determine the value of each car after 5 years.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!