1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
7

1. Consider the right triangle ABC given below.

Mathematics
2 answers:
babunello [35]3 years ago
7 0

Answer:

<u>Part 1) </u>

Part a) b=10.57\ units

Part b) a=22.66\ units (three different ways in the procedure)

<u>Part 2)</u>

First triangle (triangle a)

Part a) c=1.35\ units  

Part b) A=35.11\°

Part c) B=129.89\°

Second triangle  (triangle b)

Part a) A=83\°      

Part b) AC=10.77\ units

Part c) BC=15.11\ units  

Step-by-step explanation:

Part 1)

<u>Part A</u>

we know that

In the right triangle ABC

sin(B)=\frac{AC}{AB}  

we have

B=25\°

AC=b\ units

AB=25\ units

Substitute and solve for b

sin(25\°)=\frac{b}{25}

b=25*sin(25\°)=10.57\ units

<u>Part B</u>

First way

we know that

In the right triangle ABC

cos(B)=\frac{BC}{AB}

we have

B=25\°

BC=a\ units

AB=25\ units

Substitute and solve for a

cos(25\°)=\frac{a}{25}

a=25*cos(25\°)=22.66\ units

Second way

Applying the Pythagoras theorem

c^{2}=a^{2} +b^{2}

we have

c=25\ units

b=10.57\ units

substitute and solve for a

25^{2}=a^{2} +10.57^{2}

a^{2}=25^{2}-10.57^{2}

a=22.66\ units[

Third way

we know that

In the right triangle ABC

tan(B)=\frac{AC}{BC}

we have

B=25\°

BC=a\ units

AC=b=10.57\ units

substitute and solve for a

tan(25\°)=\frac{10.57}{a}\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units

Part 2)

<u> triangle a</u>

we have

C=15\°

a=3\ units  

b=4\ units  

Step 1

<u>Find the measure of length side c</u>

Applying the law of cosines

c^{2}=a^{2}+b^{2}-2(a)(b)cos(C)  

substitute

c^{2}=3^{2}+4^{2}-2(3)(4)cos(15\°)    

c^{2}=25-24cos(15\°)  

c=1.35\ units    

Step 2

<u>Find the measure of angle A</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=3\ units

c=1.35\ units

C=15\°

substitute and solve for A

\frac{3}{sin(A)}=\frac{1.35}{sin(15\°)}\\ \\sin(A)=3*sin(15\°)/1.35\\ \\sin(A)=0.5752\\ \\A=35.11\°

Step 3

<u>Find the measure of angle B</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=15\°

A=35.11\°

substitute

B=180\°-35.11\°-15\°=129.89\°      

<u> triangle b</u>

we have

C=52\°

B=45\°

c=12\ units  


Step 1  

<u>Find the measure of angle A</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=52\°

B=45\°

substitute

A=180\°-52\°-45\°=83\°    

Step 2

<u>Find the measure of side AC</u>

Applying the law of sines

\frac{b}{sin(B)}=\frac{c}{sin(C)}

we have

b=AC

c=12\ units

B=45\°

C=52\°

substitute and solve for b

\frac{b}{sin(45\°)}=\frac{12}{sin(52\°)}\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units

Step 3

<u>Find the measure of side BC</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=BC

c=12\ units

A=83\°

C=52\°

substitute and solve for a

\frac{a}{sin(83\°)}=\frac{12}{sin(52\°)}\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units


lbvjy [14]3 years ago
3 0
#1) 
A) b = 10.57
B) a = 22.66; the different methods are shown below.
#2)
A) Let a = the side opposite the 15° angle; a = 1.35.
Let B = the angle opposite the side marked 4; m∠B = 50.07°.
Let C = the angle opposite the side marked 3; m∠C = 114.93°.
B) b = 10.77
m∠A = 83°
a = 15.11

Explanation
#1)
A) We know that the sine ratio is opposite/hypotenuse.  The side opposite the 25° angle is b, and the hypotenuse is 25:
sin 25 = b/25

Multiply both sides by 25:
25*sin 25 = (b/25)*25
25*sin 25 = b
10.57 = b

B) The first way we can find a is using the Pythagorean theorem.  In Part A above, we found the length of b, the other leg of the triangle, and we know the measure of the hypotenuse:
a²+(10.57)² = 25²
a²+111.7249 = 625

Subtract 111.7249 from both sides:
a²+111.7249 - 111.7249 = 625 - 111.7249
a² = 513.2751

Take the square root of both sides:
√a² = √513.2751
a = 22.66

The second way is using the cosine ratio, adjacent/hypotenuse.  Side a is adjacent to the 25° angle, and the hypotenuse is 25:
cos 25 = a/25

Multiply both sides by 25:
25*cos 25 = (a/25)*25
25*cos 25 = a
22.66 = a

The third way is using the other angle.  First, find the measure of angle A by subtracting the other two angles from 180:
m∠A = 180-(90+25) = 180-115 = 65°

Side a is opposite ∠A; opposite/hypotenuse is the sine ratio:
a/25 = sin 65

Multiply both sides by 25:
(a/25)*25 = 25*sin 65
a = 25*sin 65
a = 22.66

#2)
A) Let side a be the one across from the 15° angle.  This would make the 15° angle ∠A.  We will define b as the side marked 4 and c as the side marked 3.  We will use the law of cosines:
a² = b²+c²-2bc cos A
a² = 4²+3²-2(4)(3)cos 15
a² = 16+9-24cos 15
a² = 25-24cos 15
a² = 1.82

Take the square root of both sides:
√a² = √1.82
a = 1.35

Use the law of sines to find m∠B:
sin A/a = sin B/b
sin 15/1.35 = sin B/4

Cross multiply:
4*sin 15 = 1.35*sin B

Divide both sides by 1.35:
(4*sin 15)/1.35 = (1.35*sin B)/1.35
(4*sin 15)/1.35 = sin B

Take the inverse sine of both sides:
sin⁻¹((4*sin 15)/1.35) = sin⁻¹(sin B)
50.07 = B

Subtract both known angles from 180 to find m∠C:
180-(15+50.07) = 180-65.07 = 114.93°

B)  Use the law of sines to find side b:
sin C/c = sin B/b
sin 52/12 = sin 45/b

Cross multiply:
b*sin 52 = 12*sin 45

Divide both sides by sin 52:
(b*sin 52)/(sin 52) = (12*sin 45)/(sin 52)
b = 10.77

Find m∠A by subtracting both known angles from 180:
180-(52+45) = 180-97 = 83°

Use the law of sines to find side a:
sin C/c = sin A/a
sin 52/12 = sin 83/a

Cross multiply:
a*sin 52 = 12*sin 83

Divide both sides by sin 52:
(a*sin 52)/(sin 52) = (12*sin 83)/(sin 52)
a = 15.11
You might be interested in
Given that Y= 3x – 8, what is the sum of the gradient and intercept of the linear equation? *
chubhunter [2.5K]

Answer:

- 5

Step-by-step explanation:

The equation of a line in slope - intercept form is

y = mx + c ( m is the slope (gradient) and c the t- intercept )

y = 3x - 8 ← is in slope- intercept form

with gradient m = 3 and y- intercept c = - 8 , thus

m + c = 3 + (- 8) = 3 - 8 = - 5

5 0
3 years ago
A mailbox that is 36 inches tall is beside a tree.The length of the mailboxes shadow is 28 inches.The length of the trees shadow
Eduardwww [97]

Answer:

The tree is 126 inches which is 10.5 feet.

Step-by-step explanation:

36x98= 3528

3528=28x

3528/28=126/12=10.5

6 0
3 years ago
Round 9.42 to one decimal place
klasskru [66]
The answer would be 9
6 0
3 years ago
Read 2 more answers
Please simplify this it would help a lot
dexar [7]

Answer:

-1

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Find the value of x. Round to the nearest degree.
lord [1]

<u><em>hii! how are you? hope you're having a good day! (: i wish you the best. <3 stay strong and stay safe!</em></u>

5 0
3 years ago
Other questions:
  • Please help!! Will mark Brainliest!!! 19 points
    6·1 answer
  • How can I tell if f(x)=400 in f(x)=4x-9 or if t(n)=400 in t(n)=4n-9?
    5·1 answer
  • What is the value of x^3\cdot y^4x
    9·2 answers
  • Please help as quickly as possible (20pts)
    8·1 answer
  • Solve for x: 5/8=x-1/9<br><br> A. 37/8<br> B. 23/4<br> C. 11/2<br> D. 53/8
    15·1 answer
  • A number line going from negative 1 to 1 in increments of 1. There are 4 equal spaces between each number.
    10·2 answers
  • I know i chose an answer but pls answer
    15·1 answer
  • Need help on this question
    10·2 answers
  • Terry Clayton has an open-ended lease for an SUV. The lease costs $421.38 for 48
    7·1 answer
  • Khloe made 20% of her free throws over the season. If she shot 240 free throws, how many did she make?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!