1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
2 years ago
7

1. Consider the right triangle ABC given below.

Mathematics
2 answers:
babunello [35]2 years ago
7 0

Answer:

<u>Part 1) </u>

Part a) b=10.57\ units

Part b) a=22.66\ units (three different ways in the procedure)

<u>Part 2)</u>

First triangle (triangle a)

Part a) c=1.35\ units  

Part b) A=35.11\°

Part c) B=129.89\°

Second triangle  (triangle b)

Part a) A=83\°      

Part b) AC=10.77\ units

Part c) BC=15.11\ units  

Step-by-step explanation:

Part 1)

<u>Part A</u>

we know that

In the right triangle ABC

sin(B)=\frac{AC}{AB}  

we have

B=25\°

AC=b\ units

AB=25\ units

Substitute and solve for b

sin(25\°)=\frac{b}{25}

b=25*sin(25\°)=10.57\ units

<u>Part B</u>

First way

we know that

In the right triangle ABC

cos(B)=\frac{BC}{AB}

we have

B=25\°

BC=a\ units

AB=25\ units

Substitute and solve for a

cos(25\°)=\frac{a}{25}

a=25*cos(25\°)=22.66\ units

Second way

Applying the Pythagoras theorem

c^{2}=a^{2} +b^{2}

we have

c=25\ units

b=10.57\ units

substitute and solve for a

25^{2}=a^{2} +10.57^{2}

a^{2}=25^{2}-10.57^{2}

a=22.66\ units[

Third way

we know that

In the right triangle ABC

tan(B)=\frac{AC}{BC}

we have

B=25\°

BC=a\ units

AC=b=10.57\ units

substitute and solve for a

tan(25\°)=\frac{10.57}{a}\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units

Part 2)

<u> triangle a</u>

we have

C=15\°

a=3\ units  

b=4\ units  

Step 1

<u>Find the measure of length side c</u>

Applying the law of cosines

c^{2}=a^{2}+b^{2}-2(a)(b)cos(C)  

substitute

c^{2}=3^{2}+4^{2}-2(3)(4)cos(15\°)    

c^{2}=25-24cos(15\°)  

c=1.35\ units    

Step 2

<u>Find the measure of angle A</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=3\ units

c=1.35\ units

C=15\°

substitute and solve for A

\frac{3}{sin(A)}=\frac{1.35}{sin(15\°)}\\ \\sin(A)=3*sin(15\°)/1.35\\ \\sin(A)=0.5752\\ \\A=35.11\°

Step 3

<u>Find the measure of angle B</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=15\°

A=35.11\°

substitute

B=180\°-35.11\°-15\°=129.89\°      

<u> triangle b</u>

we have

C=52\°

B=45\°

c=12\ units  


Step 1  

<u>Find the measure of angle A</u>      

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

so

A+B+C=180\°

we have

C=52\°

B=45\°

substitute

A=180\°-52\°-45\°=83\°    

Step 2

<u>Find the measure of side AC</u>

Applying the law of sines

\frac{b}{sin(B)}=\frac{c}{sin(C)}

we have

b=AC

c=12\ units

B=45\°

C=52\°

substitute and solve for b

\frac{b}{sin(45\°)}=\frac{12}{sin(52\°)}\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units

Step 3

<u>Find the measure of side BC</u>

Applying the law of sines

\frac{a}{sin(A)}=\frac{c}{sin(C)}

we have

a=BC

c=12\ units

A=83\°

C=52\°

substitute and solve for a

\frac{a}{sin(83\°)}=\frac{12}{sin(52\°)}\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units


lbvjy [14]2 years ago
3 0
#1) 
A) b = 10.57
B) a = 22.66; the different methods are shown below.
#2)
A) Let a = the side opposite the 15° angle; a = 1.35.
Let B = the angle opposite the side marked 4; m∠B = 50.07°.
Let C = the angle opposite the side marked 3; m∠C = 114.93°.
B) b = 10.77
m∠A = 83°
a = 15.11

Explanation
#1)
A) We know that the sine ratio is opposite/hypotenuse.  The side opposite the 25° angle is b, and the hypotenuse is 25:
sin 25 = b/25

Multiply both sides by 25:
25*sin 25 = (b/25)*25
25*sin 25 = b
10.57 = b

B) The first way we can find a is using the Pythagorean theorem.  In Part A above, we found the length of b, the other leg of the triangle, and we know the measure of the hypotenuse:
a²+(10.57)² = 25²
a²+111.7249 = 625

Subtract 111.7249 from both sides:
a²+111.7249 - 111.7249 = 625 - 111.7249
a² = 513.2751

Take the square root of both sides:
√a² = √513.2751
a = 22.66

The second way is using the cosine ratio, adjacent/hypotenuse.  Side a is adjacent to the 25° angle, and the hypotenuse is 25:
cos 25 = a/25

Multiply both sides by 25:
25*cos 25 = (a/25)*25
25*cos 25 = a
22.66 = a

The third way is using the other angle.  First, find the measure of angle A by subtracting the other two angles from 180:
m∠A = 180-(90+25) = 180-115 = 65°

Side a is opposite ∠A; opposite/hypotenuse is the sine ratio:
a/25 = sin 65

Multiply both sides by 25:
(a/25)*25 = 25*sin 65
a = 25*sin 65
a = 22.66

#2)
A) Let side a be the one across from the 15° angle.  This would make the 15° angle ∠A.  We will define b as the side marked 4 and c as the side marked 3.  We will use the law of cosines:
a² = b²+c²-2bc cos A
a² = 4²+3²-2(4)(3)cos 15
a² = 16+9-24cos 15
a² = 25-24cos 15
a² = 1.82

Take the square root of both sides:
√a² = √1.82
a = 1.35

Use the law of sines to find m∠B:
sin A/a = sin B/b
sin 15/1.35 = sin B/4

Cross multiply:
4*sin 15 = 1.35*sin B

Divide both sides by 1.35:
(4*sin 15)/1.35 = (1.35*sin B)/1.35
(4*sin 15)/1.35 = sin B

Take the inverse sine of both sides:
sin⁻¹((4*sin 15)/1.35) = sin⁻¹(sin B)
50.07 = B

Subtract both known angles from 180 to find m∠C:
180-(15+50.07) = 180-65.07 = 114.93°

B)  Use the law of sines to find side b:
sin C/c = sin B/b
sin 52/12 = sin 45/b

Cross multiply:
b*sin 52 = 12*sin 45

Divide both sides by sin 52:
(b*sin 52)/(sin 52) = (12*sin 45)/(sin 52)
b = 10.77

Find m∠A by subtracting both known angles from 180:
180-(52+45) = 180-97 = 83°

Use the law of sines to find side a:
sin C/c = sin A/a
sin 52/12 = sin 83/a

Cross multiply:
a*sin 52 = 12*sin 83

Divide both sides by sin 52:
(a*sin 52)/(sin 52) = (12*sin 83)/(sin 52)
a = 15.11
You might be interested in
Which of the following rational functions is graphed below? ​
Shalnov [3]
You didn’t put your whole question so I can’t help sorry :(((((((((((
4 0
2 years ago
Will mark brainliest if you could explain this to me??
Rasek [7]

Your answer would be 4379 members because at the very beginning you had started off with 4372 members, however as the months go by changes happen. On october, it changed by -10, meaning that 10 students left the school meaning 4372-10=4362 members remaining. Then there's november with -8, so you subtract 8 from your new total 4362-8=4354. Then december comes, and this time it's a positive number, so you have to add 23 to 4354, giving you a new total of 4377. Then there's january, and its back to a negative number so you subtract 12 from 4377, 4377-12=4365. Then february comes and it's a change of a positive number, so you add 3 to the 4365, giving you 4368. And then finally by march, it's another positive number so you add 11 to your total, giving you 4379 students which are now at school. So basically if it's a negative change, subtract from the total, and if it is a positive, add to it. And you have to continue with the total that you got from the previous change that you did. Hope this was helpful

8 0
2 years ago
Read 2 more answers
-10 &lt; 2x - 4 &lt; 8, What is X?
Crank

Add 4 to the whole equation

-10 + 4 < 2x < 8 + 4

Simplify

-6 < 2x < 12

Divide the whole equation by 2

-6/2 < x < 12/2

Simplify

<u>-3 < x < 6</u>

5 0
2 years ago
Read 2 more answers
HELP MEEE PLSSSS PLSSS
RideAnS [48]

Answer:

b

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Frank's toy car is 19 centimeters long. Max's
jeka94

Answer:

Pertaining to the yielded interrogate, the retort is 6.30.

Step-by-step explanation:

As disseminated, the terms may equate to the proximate as identified:

-If an inch is equivalent to the numeral equivalence of 2.54, hence 5 inches (in) is in the accordance with the equivalence to 12.7 centimeters (cm).

Alas, the terms may equate as the following:

19 cm - 12.7 cm = x

Thus, as to resolute and evaluate the retort, with respect to your interrogate, is 6.30.

*Hope this helps.

8 0
3 years ago
Read 2 more answers
Other questions:
  • 1.Which statement correctly describes the relationship between the graph of f(x)=4xf(x)=4x and the graph of g(x)=f(x)+3g(x)=f(x)
    7·2 answers
  • T costs $6 per pound for peanuts at Blessed Food Market. Which of the following represents the range of the function in terms of
    13·2 answers
  • 25 points answer it please Fast
    7·1 answer
  • Match each value with the smallest number set that it belongs to.
    7·1 answer
  • Gerald graphs the function f(x) = (x – 3)2 – 1. Which statements are true about the graph? Select three options.
    9·1 answer
  • Helppppp and you get some sweet candyyyy
    8·2 answers
  • the monthly utility bills in a city are normally distributed, with a mean of $100 and a standard deviation of $12. Find the prob
    13·1 answer
  • Find the area of squares having side 10 cm.​
    10·2 answers
  • Are these angles supplementary or congruent?
    8·1 answer
  • Help!!! <br> 1/3x - 3/4 + 5/6x = -2
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!