Apply angle bisector theorem





#2




Hope it helps
Answer:
To spend at most $93, they need to rent the room less than or equal 13 hours.
Step-by-step explanation:
<u><em>The complete question is</em></u>
To rent a certain meeting room, a college charges a reservation fee of $15 and an additional fee of $6 per hour. The chemistry club wants to spend at most $93 on renting a room. What are the possible numbers of hours the chemistry club could rent the meeting room? Use t for the number of hours. Write your answer as an inequality solved for t,
Let
t ----> the number of hours
we know that
I this problem the word "at most" means "less than or equal to"
The number of hours rented multiplied by the cost per hour, plus the reservation fee, must be less than or equal to $93
so
The inequality that represent this situation is

solve for t
subtract 15 both sides


Divide by 6 both sides

therefore
To spend at most $93, they need to rent the room less than or equal 13 hours.
Answer: Yes, y does vary directly with x.
Constant of variation = 1/4
The function rule is y = (1/4)x
=========================================================
Explanation:
Let's assume that y does vary directly with x.
If that's the case, then we have an equation in the form y = kx, where k is the constant of variation.
Solving for k gets us k = y/x
For each row, divide the y value over the x value
- row one: k = y/x = 14/56 = 0.25
- row two: k = y/x = 20/80 = 0.25
- row three: k = y/x = 22/88 = 0.25
Each row yields the value k = 0.25 and it fully confirms y does vary directly with x.
So y = kx becomes y = 0.25x as the function rule, which is equivalent to y = (1/4)x
Answer: 10380cm^3
Explanation:
Find the volume of half cylinder:
V = (pi x r^2 x h)/2 (I use pi = 22/7 for simplifying)
V = 22/7 x 6^2/2 x 35
V = 22/7 x 36/2 x 35
V = 22/7 x 35 x 18
V = 22 x 5 x 18
V = 1980cm^3
Find the volume of the rectangle:
V = 20 x 35 x 12
V = 240 x 5 x 7
V = 1200 x 7
V = 8400cm^3
Find the volume of the whole shape:
V = 1980 + 8400
V = 10380cm^3
√49 is a rational number.