1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
3 years ago
13

PLEASE HELP Which expression represents the difference quotient of the function f (x) = negative StartRoot 2 x EndRoot?

Mathematics
2 answers:
natali 33 [55]3 years ago
5 0

Answer:

c is the correct option

Step-by-step explanation:

from,

f'(x) = h >0 <u>f</u><u>(</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u>

h

f(x) = - √2x

f(x + h) = - √(2x + h)

f'(x) = h>0 <u>-</u><u>√(2x + h) - √2x</u>

h

rationalize the denominator

= h>0 <u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>+</u><u> </u><u>√</u><u>2</u><u>x</u><u> </u><u> </u><u>(</u><u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>√</u><u>2</u><u>x</u><u>)</u>

h (-√(2x + h) - √2x)

= h>0 <u>4</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>h</u><u> </u><u>-</u><u> </u><u>4</u><u>x</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>

h(-√(2x + h) -√2x)

= h>0 <u>2</u><u>h</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>

h(-√(2x+h) - √2x)

= h>0 <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>

-√(2x+h) - √2x

MrRissso [65]3 years ago
3 0

\\ \sf\longmapsto f(x)=\sqrt{2x}

Now

\\ \sf\longmapsto \dfrac{1}{-(\sqrt{2x+2h}-\sqrt{2x})}

There we plot 2h because if we break root over then it becomes √2h which satisfies f(x)

\\ \sf\longmapsto \dfrac{1}{-\sqrt{2x+2h}+\sqrt{2x}}

Option D

You might be interested in
Would it still be 3.19? Because you don't need to round to 3.20 because 3.192 &lt;--- the 2 won't do anything.. If it's 5 or hig
Leviafan [203]
Yes, remember this 4 or less let it rest, 5 or more let it soar.
7 0
4 years ago
6. Solve each equation and check your solution. 3x - 6 = 4(2 - 3x) - 8x
Advocard [28]

Answer:

Multiple answers (Work & answers below)

Step-by-step explanation:

6 0
3 years ago
A dozen apple costs $2.55.at this rate how much would 8 apple cost?
vladimir2022 [97]
12=2.55 how about 8
8 x 2.55 divided by 12=$1.7
8 0
3 years ago
Find the real zeros of the trigonometric function on the interval 0 ≤ x &lt; 2π
Romashka-Z-Leto [24]
F(x) = 4 [cos (x)]^2 - 3 = 0

4[cos(x)]^2 = 3

cos(x) = √3 / 2

That happens in the first and fourth quadrants, for the angles 30 degrees and 330 degrees.

Answer: x = 30 degrees and x = 330 degrees
5 0
4 years ago
Read 2 more answers
Can someone help me this question please?
pashok25 [27]
Larger number is 32 because if u take 48 minus 16 u get your anwser
5 0
3 years ago
Read 2 more answers
Other questions:
  • Need help with #4. Is it right?
    9·1 answer
  • Triple 3, then add s to the result
    9·1 answer
  • In the figure below, mZ1 = (x + 24) and m2 2=5x<br> Find the angle measures.
    14·1 answer
  • Find f(-2) when f(t) = -2t + 3
    7·1 answer
  • I need help with this question pleaseee
    11·1 answer
  • A= 1/2 π r ^2 solve for pi
    10·1 answer
  • Find the inverse function of f(x)=15x-1
    5·1 answer
  • A college counselor would like to select an SRS of all of the 525 students in the college. She uses the numbers from 001 to 525
    5·2 answers
  • Solve the polynomial inequality and graph the
    5·1 answer
  • Are the two cones congruent? explain and include details to support your claim.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!