Answer:
Wavelength of the photon depends on transition from different states.
Explanation:
The wavelength of the photon that is emitted from the atom during the transition depends on the transition from different states. If the photon is emitted from n=4 state to n=3 state, the wavelength of photon is 1875 while on the other hand, if the photon is emitted from n=5 state to n=3 state, the wavelength of photon is 1282. If the photon is emitted from n=3 state to n=2 state, the wavelength of photon is 656.
Answer:
<h3>The answer is 9.0 kg/L</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 1.8 kg
volume = 0.2 L
We have

We have the final answer as
<h3>9.0 kg/L</h3>
Hope this helps you
Answer:
Second order
Explanation:
We could obtain the order of reaction by looking at the table very closely.
Now notice that in experiment 1 and 2, the concentration of [OH^-] was held constant while the concentration of [S8] was varied. So we have;
a situation in which the rate of reaction was tripled;
0.3/0.1 = 2.10/0.699
3^1 = 3^1
Therefore the order of reaction with respect to [S8] is 1.
For [OH^-], we have to look at experiment 2 and 3 where the concentration of [S8] was held constant;
x/0.01 = 4.19/2.10
x/0.01 = 2
x = 2 * 0.01
x = 0.02
So we have;
0.02/0.01 = 2^1
2^1 = 2^1
The order of reaction with respect to [OH^-] = 1
So we have the overall rate law as;
Rate = k[S8]^1 [OH^-] ^1
Overall order of reaction = 1 + 1 = 2
Therefore the reaction is second order.
By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.