Is a function defined for a system relating several state variables or state quantities that depends only on the current equilibrium thermodynamic state of the system[1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which the system took to reach its present state. A state function describes the equilibrium state of a system, thus also describing the type of system. For example, a state function could describe an atom or molecule in a gaseous, liquid, or solid form; a heterogeneous or homogeneous mixture; and the amounts of energy required to create such systems or change them into a different equilibrium state.
Explanation:
1. subatomic particles.
2.proton, electron and neutron
3.The atomic mass of an element is actually the sum of the MASSES of protons and neutrons in AN atom of that element
4.An element's atomic number is equal to the number of protons in the nuclei of any of its atoms
5. Number of Protons = Atomic Number
Number of Electrons = Number of Protons = Atomic Number
Number of Neutrons = Mass Number - Atomic Number
For krypton:
Number of Protons = Atomic Number = 36
Number of Electrons = Number of Protons = Atomic Number = 36
Number of Neutrons = Mass Number - Atomic Number = 84 - 36 = 48
6. electron, lightest stable subatomic particle known. It carries a negative charge of 1.602176634 × 10−19 coulomb, which is considered the basic unit of electric charge. The rest mass of the electron is 9.1093837015 × 10−31 kg
7.The center of the atom is called a nucleus
8. Negatively charged particles are found in multiple layers outside the nucleus of the atom. These particles are called electrons, and they orbit in various energy levels around the atom's nucleus.
9. A charged particle is also called an ion
Co2 = two covalent bonds
ccl4 = 4 covalent bonds
Lih = covalent bond
Answer:
8608.18 balloons
Explanation:
Hello! Let's solve this!
Data needed:
Enthalpy of propane formation: 103.85kJ / mol
Specific heat capacity of air: 1.009J · g ° C
Density of air at 100 ° C: 0.946kg / m3
Density of propane at 100 ° C: 1.440kg / m3
First we will calculate the propane heat (C3H8)
3000g * (1mol / 44g) * (103.85kJ / mol) * (1000J / 1kJ) = 7.08068 * 10 ^ 6 J
Then we can calculate the mass of the air with the heat formula
Q = mc delta T
m = Q / c delta T = (7.08068 * 10 ^ 6 J) / (1.009J / kg ° C * (100-25) ° C) =
m = 93566.96kg
We now calculate the volume of a balloon.
V = 4/3 * pi * r ^ 3 = 4/3 * 3.14 * 1.4m ^ 3 = 11.49m ^ 3
Now we calculate the mass of the balloon
mg = 0.946kg / m3 * 11.49m ^ 3 = 10.87kg
The amount of balloons is
93566.96kg / 10.87kg = 8608.18 balloons
The answer is b.) Levi crosses a horse with a donkey to a create a mule. The mule is stronger than both of its parents.