Answer:
(-4,-4)
Step-by-step explanation:
If the zeros of a quadratic function are -6 and -2, then it is:
(x+6)(x+2)
Expanding:
=x^2+8x+12
To find the vertex, complete the square.
x^2+8x+12
=(x^2+8x+16)-16+12
=(x+4)^2-4
When the quadratic formula is written in the form y = a(x-h)^2+k, the vertex is (h, k).
(h, k)=(-4,-4)
3
C is sus btw
1x3=3
x=-6
m=(y2-y1)/(x2-x1)
m=(6-2)/(-6-(-6))
m=4/(-6+6)
m=4/0
undefined
when x=4
area=4²+14×4+c=16+56+c=72+c
8²=64
9²=81
72+c=81
c=81-72=9
area=81 units²
length of each side=√81=9 units