Answer:
Final momentum after a head on collision is -2kgm/
Explanation:
One ball moves to the right and the other moves opposite and momentum is a vector quantity so that considering the direction
Initial momenta are P₁=2x3=6kgm/s P₂=4x(-2)=-8kgm/s
Final momentum is the vector sum of P(final)= 6-8= -2 kgm/s
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
Answer:
1.52 * 10⁵ K
Explanation:
When the temperature of a blackbody radiator increases, the overall radiated energy increases and the peak of the radiation curve moves to shorter wavelengths. When the maximum is evaluated from the Planck radiation formula, the product of the peak wavelength and the temperature is found to be a constant.
By Wien's Law,
λ * T = 2.898 * 10⁻³ mK
∴ T = 2.898 * 10⁻³/λ
Given λ = 19 nm = 19 * 10⁻⁹
T = 2.898 * 10⁻³ / 19 * 10⁻⁹
=1.52 * 10⁵ K
39.72 m/s is the velocity of the body.