Answer:
2.5 seconds
Explanation:
s(t) = -16t^2 + 80t + 384
for
0≤t≤8
First we differentiate s(t) to get s'(t)
s'(t) = -32t + 80
Let us then find the critical point; thus we will equate s'(t) to zero and then search for values where s'(t) is undefined
s'(t) = -32t + 80 = 0
t = 80/32
t = 2.5 sec
Let us evaluate s at the critical points and end points
s(0) = -16(0)^2 + 80(0) + 384 = 384
s(2.5) = -16(2.5)^2 + 80(2.5) + 384 = 684
s(8) = -16(8)^2 + 80(8) + 384 = 0
Thus, the stone attains it maximum height of 684ft at at t=2.5s
Answer:
the speed of the bullet before striking the block is 302.3 m/s.
Explanation:
Given;
mass of the bullet, m₁ = 28.3 g = 0.0283 kg
mass of the wooden block, m₂ = 5004 g = 5.004 kg
initial velocity of the block, u₂ = 0
final velocity of the bullet-wood system, v = 1.7 m/s
let the initial velocity of the bullet before striking the block = u₁
Apply the principle of conservation of linear momentum to determine the initial velocity of the bullet.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.0283u₁ + 5.004 x 0 = 1.7(0.0283 + 5.004)
0.0283u₁ = 8.5549
u₁ = 8.5549 / 0.0283
u₁ = 302.3 m/s
Therefore, the speed of the bullet before striking the block is 302.3 m/s.
Answer:
The mass of the objects
Distance between the objects
Explanation:
The two factors that determines the amount of gravitational force between two objects is the mass of the objects and the distance between them.
Gravitational force of attraction is directly proportional to the product of the masses of the two objects and inversely proportional to the square of the distance between them. This is the postulate of the newton's law of universal gravitation.
Mathematically:
F =
m is the mass
r is the distance
G is the universal gravitation constant