Answer:
and
.
Step-by-step explanation:
Let
be the smaller one of the two number.
must be a positive integer. The other number would be
.
The question states that the product of the two numbers is
. In other words:
.
Rearrange this equation and solve for
:
.
The first root of this quadratic equation would be:
.
Similarly, the second root of this quadratic equation would be:
.
Since the question requires that both numbers should be positive,
. Therefore, only
is valid.
Hence, the two numbers would be
and
, which is
.
Answer:
there is your answer hope that helps
Answer:
Step-by-step explanation:
The graph is symmetric with respect to the origin therefore it is on odd function. The graph is symmetric to the y- axis therefore it is an even function. The majority of functions are neither odd nor even, however, sine and tangent are odd functions and cosine is an even function.
Answer: ![A^{-1}=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
<u>Step-by-step explanation:</u>
![\left[\begin{array}{cc}2&1\\4&3\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![\dfrac{1}{2}Row\ 1\rightarrow\left[\begin{array}{cc}1&\frac{1}{2}\\4&3\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7DRow%5C%201%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 2 -4 \ Row\ 1\rightarrow \left[\begin{array}{cc}1&\frac{1}{2}\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%202%20-4%20%5C%20Row%5C%201%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 1-\dfrac{1}{2}\ Row\ 2 \rightarrow \left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%201-%5Cdfrac%7B1%7D%7B2%7D%5C%20Row%5C%202%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
Y^2+4y=-8
add 8 both sides
y^2+4y+8=0 in the form of ax²+bx+c=0
Factor it
by formula
-b+-(√b²-4ac)/2a
-4+-(√16-32)/2*1
-4+-(√-16)/2
-4+-4i/2
-2+-2i where√-1=i