Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
The correct option is;
B. Throughout all of history
Explanation:
A body of knowledge comprises of a given collection of concepts, activities and terms that represents a professional discipline that is outlined by the associated scholarly society, therefore, scientific knowledge, being comprised of very diverse field of knowledge, with different approaches and changing understanding is taking as a process of learning about the universe data collection, experimenting analysis and communication with a theme of systems, equilibrium, models and constant change which makes the basis of the body of scientific knowledge to be throughout all of history.
Answer:
Explanation:
Lattice energy is the energy required to separate one mole of an ionic solid compound into its components gaseous cations and anions.
Due to increase in size of the ions, the lattice energy decreases while the lattice energy increases as the charge of the ions increases.
When the size increase, the distance between the nuclei also increase leading a decrease the force of attraction between the nuclei
Answer:
t = 96.1 nm
Explanation:
For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength
now we know that the path difference of two reflected light from thin liquid layer is given as

here we know that

t = thickness of layer
N = 0 (for minimum thickness of layer)

now we have

