Answer:
(a) the angular velocity at θ1 is 11.64 rad/s
(b) the angular acceleration is 0.12 rad/
(c) the angular position was the disk initially at rest is - 428.27 rad
Explanation:
Given information :
θ1 = 16 rad
θ2 = 76 rad
ω2 = 11 rad/s
t = 5.3 s
(a) The angular velocity at θ1
First, we use the angular motion equation for constant acceleration
Δθ = (ω1+ω2)t/2
θ2 - θ1 = (ω1+ω2)t/2
ω1 + ω2 = 2 (θ2 - θ1) / t
ω1 = (2 (θ2 - θ1) / t ) - ω2
= (2 (76-16) / 5.3) - 11
= 11.64 rad/s
(b) the angular acceleration
ω2 = ω1 + α t
α t = ω2 - ω1
α = (ω2 - ω1)/t
= (11.64 - 11) / 5.3
= 0.12 rad/
(c) the angular position was the disk initially at rest, θ0
at rest ω0 = 0
ω2^2 = ω01 t + 2 α Δθ
2 α Δθ = ω2^2
θ2 - θ0 = ω2^2 / 2 α
θ0 = θ2 - (ω2^2) / 2 α
= 76 - (
/ 2 x 0.12
= 76 - 504.16
= - 428.27 rad
I think it might be A. I’m sorry if I’m wrong
Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
The answer completely depends on the number that belongs in the space before the word "microfarad".
I would think A. Reduce Environmental Impacts.
If you build and populate more zoos, some of the endangered species might not be able to survive in captivity
If you introduce new predators they are going to kill all the endangered species and if you pass new laws about land use some people may kill the species