Answer:
probability that the other side is colored black if the upper side of the chosen card is colored red = 1/3
Step-by-step explanation:
First of all;
Let B1 be the event that the card with two red sides is selected
Let B2 be the event that the
card with two black sides is selected
Let B3 be the event that the card with one red side and one black side is
selected
Let A be the event that the upper side of the selected card (when put down on the ground)
is red.
Now, from the question;
P(B3) = ⅓
P(A|B3) = ½
P(B1) = ⅓
P(A|B1) = 1
P(B2) = ⅓
P(A|B2)) = 0
(P(B3) = ⅓
P(A|B3) = ½
Now, we want to find the probability that the other side is colored black if the upper side of the chosen card is colored red. This probability is; P(B3|A). Thus, from the Bayes’ formula, it follows that;
P(B3|A) = [P(B3)•P(A|B3)]/[(P(B1)•P(A|B1)) + (P(B2)•P(A|B2)) + (P(B3)•P(A|B3))]
Thus;
P(B3|A) = [⅓×½]/[(⅓×1) + (⅓•0) + (⅓×½)]
P(B3|A) = (1/6)/(⅓ + 0 + 1/6)
P(B3|A) = (1/6)/(1/2)
P(B3|A) = 1/3
Answer:
The answer is the 2nd option
Step-by-step explanation:
Answer:
Using the equation y = abx , substitute both of your given points into that equation.
2 = ab2 and 4 = ab3 Solve each equation for a.
2⁄b2 and 4⁄b3 = a Therefore, 2⁄b2 = 4⁄b3
Cross multiply: 2b3 = 4b2 Divide both sides by b2
2b = 4 a = 2/4 = 1/2
b = 2
y = 1 (2)x
2
Step-by-step explanation:
Answer:minor arc 152 & major arc 298
Step-by-step explanation:
Answer:
i hope it helps
Step-by-step explanation: