Explanation:
( a )
<u>The four types of spread spectrum techniques are as follows -</u>
1. Direct sequence spread spectrum .
2. frequency hopping spread spectrum .
3. chirp spread spectrum .
4. time hopping spread spectrum .
( b )
<u>The Direct sequence spread spectrum was devised for eavesdropping in the military .</u>
In the field of telecommunications , the Direct sequence spread spectrum , it is the technique of spread spectrum modulation which is used to reduce the overall inference of the signal .
Answer:
I hope this is it. I'm not really sure.
Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Explanation:
The given chemical equation is:

The rate of the reaction is 0.0352 M/s.
During the course of the reaction, the rate of reactants decreases, and the rate of products increases.
The rate of disappearance of B is shown below:
![rate=-\frac{1}{4} \frac{d[B]}{dt}](https://tex.z-dn.net/?f=rate%3D-%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
So, rate of change of B is :

Option C.