Answer:
1.67g/cm3
Explanation:
The formula for density is
. The m variable stands for mass and the v variable stands for volume.
The mass of the brown sugar is 10.0g and the volume is 6.0cm3, so we can plug those values into the equation.



Rounded to 3 significant figures, the density of the block of brown sugar is 1.67 g/cm3. If the mass is in grams and the volume is in cm3, the unit for the final answer is
(grams per centimetres cubed).
Water molecules move througout the solute
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
<u>Answer:</u> The value of
for the net reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:
As, the net reaction is the result of the addition of first equation and the second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the net reaction is 