The mass of calcium hydroxide that is formed when 10.0 g of CaO reacts with 10.0 g of water is 13.024 grams
calculation
from the equation
CaO + H2O → Ca(OH)2,
1 moles of CaO reacted with 1 moles of H2O to form 1 moles of Ca(OH)2
find the moles of each reactant
moles=mass/molar mass
moles of CaO= 10 g/56 g/mol=0.179 moles
moles of H2O = 10 g/18 g/mol 0.556 moles
CaO is the limiting reagent therefore by use of mole ratio of CaO:Ca(OH)2 which is 1:1 moles of Ca(OH)2 is = 0.179 moles
mass= moles x molar mass
= 0.176 moles x 74 g/mol = 13.024 grams
Answer:
protons, nuetrons, electrons
Explanation:
compounds and electrons are made up of atoms.
Answer:
39.2 g
Explanation:
- 2Ni₂O₃(s) ⟶ 4Ni(s) + 3O₂(g)
First we <u>convert 55.3 grams of Ni₂O₃ into moles of Ni₂O₃</u>, using its<em> molar mass</em>:
- 55.3 g ÷ 165.39 g/mol = 0.334 mol Ni₂O₃
Then we <u>convert 0.334 moles of Ni₂O₃ into moles of Ni</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 0.334 mol Ni₂O₃ *
= 0.668 mol Ni
Finally we <u>calculate how much do 0.668 Ni moles weigh</u>, using the<em> molar mass of Ni </em>:
- 0.668 mol Ni * 58.69 g/mol = 39.2 g
The hydrogen deficiency index( HDI) of strigol is = 10
<h3>How to calculate HDI:</h3>
The hydrogen deficiency index is used to measure the number of degree of unsaturation of an organic compound.
Strigol is an example of an organic compound because it contains carbons and hydrogen.
To calculate the HDI using the molecular formula given (C19H20O6) the formula for HDI is used which is:

where C = number of carbon atoms = 19
n= number of nitrogen atoms = 0
h= number of hydrogen atoms = 20
X = number of halogen atoms = 0
Note that oxygen was not considered because it forms two bonds and has no impact.
There for HDI =

HDI=

HDI =

HDI = 10
Therefore, the hydrogen deficiency index of strigol is = 10
Learn more about unsaturated compounds here:
brainly.com/question/490531
Answer:
Bonds are polar when one element in a compound is more electronegative than the other. This creates a dipole in the molecule where one end of the molecule is partially positive and one end is partially negative
Explanation: