Answer:
Your input -2.9,-5.0,-7.1,-9.2,-11.3,-13.4,-15.5,-17.6 appears to be an arithmetic sequence
Step-by-step explanation:
Answer:
The sequence diverges.
Step-by-step explanation:
A sequence
converges when
is a real number.
In this question, the sequence given is:
![a_{n} = 4n\cos{(7n\pi)}](https://tex.z-dn.net/?f=a_%7Bn%7D%20%3D%204n%5Ccos%7B%287n%5Cpi%29%7D)
The cosine is always going to be between -1 and 1, so for the convergence of the sequence, we look it as:
. So
![\lim_{n \rightarrow \infty} a_{n} = \lim_{n \rightarrow \infty} 4n = \infty](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20a_%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%204n%20%3D%20%5Cinfty)
Since the limit is not a real number, the sequence diverges.
Answer:
The arc length is ![\dfrac{21}{16}](https://tex.z-dn.net/?f=%5Cdfrac%7B21%7D%7B16%7D)
Step-by-step explanation:
Given that,
The given curve between the specified points is
![x=\dfrac{y^4}{16}+\dfrac{1}{2y^2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D)
The points from
to ![(\dfrac{9}{8},2)](https://tex.z-dn.net/?f=%28%5Cdfrac%7B9%7D%7B8%7D%2C2%29)
We need to calculate the value of ![\dfrac{dx}{dy}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D)
Using given equation
![x=\dfrac{y^4}{16}+\dfrac{1}{2y^2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D)
On differentiating w.r.to y
![\dfrac{dx}{dy}=\dfrac{d}{dy}(\dfrac{y^2}{16}+\dfrac{1}{2y^2})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7Bd%7D%7Bdy%7D%28%5Cdfrac%7By%5E2%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D%29)
![\dfrac{dx}{dy}=\dfrac{1}{16}\dfrac{d}{dy}(y^4)+\dfrac{1}{2}\dfrac{d}{dy}(y^{-2})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7B1%7D%7B16%7D%5Cdfrac%7Bd%7D%7Bdy%7D%28y%5E4%29%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%7D%7Bdy%7D%28y%5E%7B-2%7D%29)
![\dfrac{dx}{dy}=\dfrac{1}{16}(4y^{3})+\dfrac{1}{2}(-2y^{-3})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7B1%7D%7B16%7D%284y%5E%7B3%7D%29%2B%5Cdfrac%7B1%7D%7B2%7D%28-2y%5E%7B-3%7D%29)
![\dfrac{dx}{dy}=\dfrac{y^3}{4}-y^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7By%5E3%7D%7B4%7D-y%5E%7B-3%7D)
We need to calculate the arc length
Using formula of arc length
![L=\int_{a}^{b}{\sqrt{1+(\dfrac{dx}{dy})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7Ba%7D%5E%7Bb%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7Bdx%7D%7Bdy%7D%29%5E2%7Ddy%7D)
Put the value into the formula
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4}-y^{-3})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D-y%5E%7B-3%7D%29%5E2%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4})^2+(y^{-3})^2-2\times\dfrac{y^3}{4}\times y^{-3}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2-2%5Ctimes%5Cdfrac%7By%5E3%7D%7B4%7D%5Ctimes%20y%5E%7B-3%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4})^2+(y^{-3})^2-\dfrac{1}{2}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2-%5Cdfrac%7B1%7D%7B2%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{(\dfrac{y^3}{4})^2+(y^{-3})^2+\dfrac{1}{2}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2%2B%5Cdfrac%7B1%7D%7B2%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{(\dfrac{y^3}{4}+y^{-3})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%2By%5E%7B-3%7D%29%5E2%7Ddy%7D)
![L= \int_{1}^{2}{(\dfrac{y^3}{4}+y^{-3})dy}](https://tex.z-dn.net/?f=L%3D%20%5Cint_%7B1%7D%5E%7B2%7D%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%2By%5E%7B-3%7D%29dy%7D)
![L=(\dfrac{y^{3+1}}{4\times4}+\dfrac{y^{-3+1}}{-3+1})_{1}^{2}](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7By%5E%7B3%2B1%7D%7D%7B4%5Ctimes4%7D%2B%5Cdfrac%7By%5E%7B-3%2B1%7D%7D%7B-3%2B1%7D%29_%7B1%7D%5E%7B2%7D)
![L=(\dfrac{y^4}{16}+\dfrac{y^{-2}}{-2})_{1}^{2}](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7By%5E%7B-2%7D%7D%7B-2%7D%29_%7B1%7D%5E%7B2%7D)
Put the limits
![L=(\dfrac{2^4}{16}+\dfrac{2^{-2}}{-2}-\dfrac{1^4}{16}-\dfrac{(1)^{-2}}{-2})](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7B2%5E4%7D%7B16%7D%2B%5Cdfrac%7B2%5E%7B-2%7D%7D%7B-2%7D-%5Cdfrac%7B1%5E4%7D%7B16%7D-%5Cdfrac%7B%281%29%5E%7B-2%7D%7D%7B-2%7D%29)
![L=\dfrac{21}{16}](https://tex.z-dn.net/?f=L%3D%5Cdfrac%7B21%7D%7B16%7D)
Hence, The arc length is ![\dfrac{21}{16}](https://tex.z-dn.net/?f=%5Cdfrac%7B21%7D%7B16%7D)
Well if you take 468 and divide it by 18 you get 26 that 26mpg take 754 divide it by 26 and you get 29 and that's how many gallons he used
Answer:
perimeter is 12x-6
Step-by-step explanation:
perimeter is the sum of all sides
3(x+2) + 2x+11 + 7x-23
distribute the 3 in the first term, then combine 'like terms'
3x+6 + 2x+11 + 7x-23
3x+2x+7x + 6+11+(-23)
12x-6