1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
9

*Silly and/or spam answers will not be tolerated*

Mathematics
2 answers:
stepladder [879]3 years ago
5 0

Answer:

-1/8

Step-by-step explanation:

lim x approaches -6     (sqrt( 10-x) -4) / (x+6)

Rationalize

   (sqrt( 10-x) -4)      (sqrt( 10-x) +4)

    ------------------- * -------------------

       (x+6)                 (sqrt( 10-x) +4)

We know ( a-b) (a+b) = a^2 -b^2

a= ( sqrt(10-x)   b = 4    

(10-x) -16

-------------------

(x+6) (sqrt( 10-x) +4)    

-6-x

-------------------

(x+6) (sqrt( 10-x) +4)

Factor out -1 from the numerator

-1( x+6)

-------------------

(x+6) (sqrt( 10-x) +4)

Cancel x+6 from the numerator and denominator

-1

-------------------

(sqrt( 10-x) +4)

Now take the limit

lim x approaches -6    -1/ (sqrt( 10-x) +4)

                                      -1/ (sqrt( 10- -6) +4)

                                      -1/ (sqrt(16) +4)

                                      -1 /( 4+4)

                                        -1/8

NeTakaya3 years ago
3 0

Answer:

\lim_{x \to -6}\frac{\sqrt{10-x}-4}{x+6} =-\frac{1}{8}

Step-by-step explanation:

So first, we should always try direct substitution:

\lim_{x \to -6}\frac{\sqrt{10-x}-4}{x+6} \\

Plug -6 in for x:

\frac{\sqrt{10-(-6)}-4}{(-6)+6} \\=\frac{\sqrt{16}-4}{-6+6}\\ =\frac{4-4}{-6+6}=0/0

This is the indeterminate form. This doesn't mean the limit does not exist, but rather we need to simplify it first.

Looking at the limit, we see that there is a square root in the numerator. Therefore, we can use the difference of two squares to cancel out the square root in the numerator. Recall the difference of two squares formula:

(a-b)(a+b)=a^2-b^2

The expression in the numerator is:

\sqrt{10-x}-4

Therefore, to cancel it out, we need to multiply by:

\sqrt{10-x}+4

Essentially, you just change the sign. So, multiply both the numerator and denominator by this expression:

\lim_{x \to -6}\frac{\sqrt{10-x}-4}{x+6}\cdot\frac{\sqrt{10-x}+4}{\sqrt{10-x}+4}  \\

For the numerator, this is the difference of two squares pattern. Therefore:

\lim_{x \to -6}\frac{(\sqrt{10-x})^2-(4)^2}{x+6(\sqrt{10-x}+4)}

The roots in the numerator cancel. 4 squared is 16. Simplify:

\lim_{x \to -6}\frac{(10-x)-16}{x+6(\sqrt{10-x}+4)}

Simplify:

\lim_{x \to \ -6}\frac{-x-6}{x+6(\sqrt{10-x}+4)}

Factor out a negative 1 from the numerator:

\lim_{x \to \ -6}\frac{-(x+6)}{(x+6)(\sqrt{10-x}+4)}

The (x+6)s cancel out:

\lim_{x \to \ -6}\frac{-1}{(\sqrt{10-x}+4)}

Now, plug -6 again:

\frac{-1}{(\sqrt{10-(-6)}+4)}\\=\frac{-1}{\sqrt{16+4}}\\ =-1/(4+4)=-1/8=-.125

Therefore:

\lim_{x \to -6}\frac{\sqrt{10-x}-4}{x+6} =-\frac{1}{8}

You might be interested in
A 12 foot ladder is placed 5 feet from the base of the building. About how high does the ladder reach?
Mariulka [41]

Answer:

7 foot

Step-by-step explanation:

8 0
3 years ago
A commercial builder has a downtown lot with 250 frontage feet on Broadway. The lot is 200’ deep. By code, the builder must allo
Morgarella [4.7K]

Subtract 15 from the depth:

200-15 = 185

Subtract 20 from the width ( 10 from both sides)

250-20 = 230

Area to build on: 185 x 230 = 42,550 square feet.

8 0
3 years ago
Which expression is equivalent to \left(3^{-6}\times 3^{3}\right)^{-1}\normalsize?(3 −6 ×3 3 ) −1 ? 3^{-19}3 −19 3^{18}3 18 3^{-
mars1129 [50]

Answer:

27

Step-by-step explanation:

Given the expression

\left(3^{-6}\times 3^{3}\right)^{-1}\\

According to law of indices, this can be written as;

\left(3^{-6+3})^{-1}\\\\= (3^{-3})^{-1}\\\\= 3^{-3*-1}\\\\= 3^3\\\\= 27

Hence the required answer is 27

5 0
2 years ago
Select the correct answer. Using synthetic division, find (2x4 + 4x3 + 2x2 + 8x + 8) ÷ (x + 2). A. B. C. D.
Mamont248 [21]

Step-by-step explanation:

If you use synthetic division, you get,

2x {}^{3}  + 2x + 4 +  \frac{0}{x + 2}

Which is,

2x {}^{3}  + 2x + 4

Answered by GAUTHMATH

5 0
3 years ago
Identify the vertex of the graph tell wether it is a minimum or maximum
TiliK225 [7]
-1  ,  1 ..........................................................
5 0
3 years ago
Read 2 more answers
Other questions:
  • Write 1/3 of 7 as a fraction?
    13·2 answers
  • PLEASE HELP I WILL MARK YOU BRAINLIEST
    8·2 answers
  • The product of three integers is -3. Determine all of the possible values for the three factors
    7·1 answer
  • Answer ? For this question
    13·1 answer
  • 5.2 8th go math page 137 question 9
    9·1 answer
  • Which amount is larger and by how much? A positive number a or the same number a decreased by 50% and then increased by 50% of t
    13·1 answer
  • To which set of numbers does the number –5 belong? Select all that apply. integers natural numbers rational numbers real numbers
    7·2 answers
  • Which equation represents a line which is perpendicular to the line
    14·1 answer
  • If your ex liked your video does this mean that he could still possibly like me -Jelissa
    14·1 answer
  • Ecuaciones lineales , El valor de x , x+7 = 2 necesito saber el reasultado de este ejercicio.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!