Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
The general formula for alkenes is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.
What are alkenes?
Alkenes, commonly known as olefins, are organic unsaturated hydrocarbons that have one or more carbon-carbon double bonds in their chemical structure and are composed of carbon and hydrogen atoms.
Alkenes are unsaturated hydrocarbons with a double bond between the carbon atoms. Carbon atoms are connected by at least one double bond. The general formula for alkenes is C n H 2n. Olefin is frequently substituted with alkenes. The word "olefin" comes from the Greek phrase "olefin gas," which denotes the production of oil.
<u>Since, their general formula is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.</u>
To learn more about alkenes from the given link below,
brainly.com/question/27179090
#SPJ4
Answer:
Percent error = 25%
Explanation:
Given data:
Measured density of water = 1.25 g/mL
Accepted density value of water = 1 g/mL
Percent error = ?
Solution:
Formula:
Percent error = (measured value - accepted value / accepted value) × 100
Now we will put the values in formula:
Percent error = (1.25 g/mL - 1 g/mL /1 g/mL )× 100
Percent error = (0.25 g/mL /1 g/mL )× 100
Percent error = 0.25 × 100
Percent error = 25%
Oxygen and glucose and energy. <span />