Answer:
Bonds basically differs with each other due to sharing of electrons .
Explanation:
There are majorly three kinds of bonds
1. Ionic bonds which forms due to an element donate an electron to another element completely .
2. covalent bonds which forms with the mutual sharing of electrons b/w two atoms .
3. metallic bonds which forms b/w metals & they share electrons due to electron negativity difference b/w two atoms or elements
Answer:
The last one because the first one is the most conductive so if you reverse its least conductive
Explanation:
tadaaa
A. This is not a redox reaction. It is an example of combustion.
<h3>Combustion reaction of hydrocarbon</h3>
During the combustion of a hydrocarbon, the hydrocarbon reacts with oxygen to create carbon dioxide, water, and heat.
<h3>Example of combustion reaction</h3>
2C8H18 + 25O2 → 16CO2 + 18H2O
Thus, we can conclude that, this is not a redox reaction. It is an example of combustion.
Learn more about combustion here: brainly.com/question/9425444
#SPJ1
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
<span>the solvent, hope this helps</span>