1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
14

Solve and graph the solution set. x+1 <3

Mathematics
1 answer:
balandron [24]3 years ago
5 0

Answer:

<h3>X<2</h3>

Step-by-step explanation:

To solve this problem, first, you have to isolate x on one side of the equation.

x+1-1<3-1 (First, subtract 1 from both sides.)

3-1 (Solve.)

3-1=2

x<2

The correct answer is x<2.

You might be interested in
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Solve the equation –2/3x = –12.
Ulleksa [173]

Answer: x = 18

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Write a real-world problem involving a percent that can be solved by using the proportion 3/b = 60/100. Then solve the proportio
sergey [27]
Haikakdnzjksksksksksksksoosososksjdj
5 0
3 years ago
A brick measures 30 cm × 10 cm × 7 1/2. How many bricks will be required for a wall 30 m long. 2 m high and 3/4 m thick?
Olenka [21]

Answer:

the answer is 45

Step-by-step explanation:

all you have to do is multiply 30*2*3/4

to get 45

5 0
3 years ago
Simplify 14 to the fifteenth power over 14 to the fifth power.
podryga [215]

Answer:

4^10

subtract 15-5 and leave the 14 be

8 0
3 years ago
Read 2 more answers
Other questions:
  • How do you solve an equation with Fractions?<br><br> Ex. 1/2(7x + 48)<br> Ex. -(1/2 x -3)+4(x + 5)
    15·1 answer
  • What is the quotient of a number and 4 is at most 5
    15·2 answers
  • Joe and maggie are working at Mcdonalds. Joe makes $8.50 per hour while Maggie makes $9.00 per hour. How much will they both mak
    5·2 answers
  • Circle H is inscribed with quadrilateral D E F G. Angle E is 123 degrees. The measure of arc D E is 73 degrees. What is the meas
    7·2 answers
  • Divide the following polynomial and then place the answer in the proper location on the grid.
    5·1 answer
  • Is 48.4 closest to 49 on a number line
    9·1 answer
  • Koleman just received a 6% raise in salary. Before the raise he was making $52,000 per year. How much more will Koleman earn nex
    13·2 answers
  • Julita bought a sandwich for $3.50
    10·2 answers
  • What is the b in 4b+3=9 thank you
    8·2 answers
  • What is the value of the expression 10-1/2^4x48
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!