Answer:
we conclude that an inequality 'c ≥ 5' denotes this situation.
Step-by-step explanation:
Given
- A car dealer ship sells at least 5 minivans
When we talk about 'at least', it means we are talking about '≥' in terms of representing the 'at least' in inequality symbol.
For instance,
'm≥n' means 'm' is greater than or equal to 'n'.
It means 'm' is at least equal to 'n'.
Coming back to the question,
- Let 'c' represent the number of minivans sold each week.
As the car dealer ship sells at least 5 minivans. so the
inequality will be: c ≥ 5
Thus, we conclude that an inequality 'c ≥ 5' denotes this situation.
Answer:
I would say that the Answer is 35 I hope this isnt wrong..
1)
![(-2+\sqrt{-5})^2\implies (-2+\sqrt{-1\cdot 5})^2\implies (-2+\sqrt{-1}\sqrt{5})^2\implies (-2+i\sqrt{5})^2 \\\\\\ (-2+i\sqrt{5})(-2+i\sqrt{5})\implies +4-2i\sqrt{5}-2i\sqrt{5}+(i\sqrt{5})^2 \\\\\\ 4-4i\sqrt{5}+[i^2(\sqrt{5})^2]\implies 4-4i\sqrt{5}+[-1\cdot 5] \\\\\\ 4-4i\sqrt{5}-5\implies -1-4i\sqrt{5}](https://tex.z-dn.net/?f=%28-2%2B%5Csqrt%7B-5%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%5Ccdot%205%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%7D%5Csqrt%7B5%7D%29%5E2%5Cimplies%20%28-2%2Bi%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%20%28-2%2Bi%5Csqrt%7B5%7D%29%28-2%2Bi%5Csqrt%7B5%7D%29%5Cimplies%20%2B4-2i%5Csqrt%7B5%7D-2i%5Csqrt%7B5%7D%2B%28i%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D%2B%5Bi%5E2%28%5Csqrt%7B5%7D%29%5E2%5D%5Cimplies%204-4i%5Csqrt%7B5%7D%2B%5B-1%5Ccdot%205%5D%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D-5%5Cimplies%20-1-4i%5Csqrt%7B5%7D)
3)
let's recall that the conjugate of any pair a + b is simply the same pair with a different sign, namely a - b and the reverse is also true, let's also recall that i² = -1.
![\cfrac{6-7i}{1-2i}\implies \stackrel{\textit{multiplying both sides by the denominator's conjugate}}{\cfrac{6-7i}{1-2i}\cdot \cfrac{1+2i}{1+2i}\implies \cfrac{(6-7i)(1+2i)}{\underset{\textit{difference of squares}}{(1-2i)(1+2i)}}} \\\\\\ \cfrac{(6-7i)(1+2i)}{1^2-(2i)^2}\implies \cfrac{6-12i-7i-14i^2}{1-(2^2i^2)}\implies \cfrac{6-19i-14(-1)}{1-[4(-1)]} \\\\\\ \cfrac{6-19i+14}{1-(-4)}\implies \cfrac{20-19i}{1+4}\implies \cfrac{20-19i}{5}\implies \cfrac{20}{5}-\cfrac{19i}{5}\implies 4-\cfrac{19i}{5}](https://tex.z-dn.net/?f=%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Ccdot%20%5Ccfrac%7B1%2B2i%7D%7B1%2B2i%7D%5Cimplies%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%281-2i%29%281%2B2i%29%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B1%5E2-%282i%29%5E2%7D%5Cimplies%20%5Ccfrac%7B6-12i-7i-14i%5E2%7D%7B1-%282%5E2i%5E2%29%7D%5Cimplies%20%5Ccfrac%7B6-19i-14%28-1%29%7D%7B1-%5B4%28-1%29%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B6-19i%2B14%7D%7B1-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B1%2B4%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B20%7D%7B5%7D-%5Ccfrac%7B19i%7D%7B5%7D%5Cimplies%204-%5Ccfrac%7B19i%7D%7B5%7D)
Yes! This is because -150/10 can be simplified to be -15, which is a rational number.
The word “rational” sounds like another math word you’ve heard of before. Do you know what it is?
Well, it’s “ratio”!! Ratios can be seen in the forms x:y and x/y.
ANY RATIONAL NUMBER HAS THE ABILITY TO BE WRITTEN AS A RATIO!! This will completely exclude numbers with super long decimal points (ex: 1.2345678809928374737272828...)
This number also meets the requirements of being an integer. An integer is any whole number (this excludes decimals and fractions)
I know it’s written as a fraction. However, the fraction could be simplified, making it -15, which means this is both a rational number and an integer!!
Answer:
B. No, because the trials of the experiment are not independent and the probability of success differs from trial to trial.
Step-by-step explanation:
The first criterion of a binomial distribution is a fixed number of trials. Selecting 5 senators means the number of trials is 5, which is a fixed number.
The next criterion is that the trials must be independent. Selecting the senators without replacement means the trials are dependent, not independent; this means that this is not a binomial distribution.