Gross
Step-by-step explanation:
It is an adjective
That would depend on the size of your classroom. but, typically the answer is no
12/5 - 3/10 = 24-3 /10 = 21/10
OR 2.1 in decimal form
Check the picture below.
so, let's notice, is really just a 2x20 rectangle with a quarter of a semicircle with a radius of 11.
![\bf \stackrel{\textit{area of a circle}}{A=\pi r^2}~~ \implies A=\pi 11^2\implies A=121\pi \implies \stackrel{\textit{one quarter of that}}{\boxed{A=\cfrac{121\pi }{4}}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\underline{\textit{area of the figure}}}{\stackrel{\textit{rectangle's area}}{(2\cdot 20)}+\stackrel{\textit{circle's quart's area}}{\cfrac{121\pi }{4}}\qquad \approx \qquad 135.03\implies \stackrel{\textit{rounded up}}{135}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20circle%7D%7D%7BA%3D%5Cpi%20r%5E2%7D~~%20%5Cimplies%20A%3D%5Cpi%2011%5E2%5Cimplies%20A%3D121%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bone%20quarter%20of%20that%7D%7D%7B%5Cboxed%7BA%3D%5Ccfrac%7B121%5Cpi%20%7D%7B4%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Cunderline%7B%5Ctextit%7Barea%20of%20the%20figure%7D%7D%7D%7B%5Cstackrel%7B%5Ctextit%7Brectangle%27s%20area%7D%7D%7B%282%5Ccdot%2020%29%7D%2B%5Cstackrel%7B%5Ctextit%7Bcircle%27s%20quart%27s%20area%7D%7D%7B%5Ccfrac%7B121%5Cpi%20%7D%7B4%7D%7D%5Cqquad%20%5Capprox%20%5Cqquad%20135.03%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B135%7D%7D)
Answer:
(-√(6-√26) < x < √(6-√26)) ∪ (x < -√(6 +√26)) ∪ (√(6 +√26) < x)
Step-by-step explanation:
Using x^2 = z, the equation can be rewritten as ...
z^2 -12z +10 > 0
(z -6)^2 -26 > 0
|z -6| > √26
This resolves to two equations.
This one ...
x^2 -6 < -√26 . . . . substitute x^2 for z
|x| < √(6-√26) . . . . add 6, take the square root; use √a^2 = |a|
-√(6-√26) < x < √(6-√26)
__
and this one ...
x^2 -6 > √26
|x| > √(6 +√26)
x < -√(6 +√26) ∪ √(6 +√26) < x