Answer:
The one at the bottom is "Neither"
The one that begins with (-4,14) is exponential.
The one that begins with (-3, 8) is a linear
Step-by-step explanation:
✿————✦————✿————✦————✿
The answer is: <u>2(k2−4k)(2c+5)</u>
✿————✦————✿————✦————✿
Step:
* Consider 2ck2+5k2−8ck−20k. Do the grouping 2ck2+5k2−8ck−20k=(2ck2+5k2) +(−8ck−20k), and factor out k2 in the first and −4k in the second group.
* Factor out the common term 2c+5 by using the distributive property.
* Rewrite the complete factored expression.
✿————✦————✿————✦————✿
Answer:
h (x)=-16x^(2)+3x+35 =
x-intercept(s): (3+√224932,0),(3−√2249 32,0)
y-intercept(s): (0,35)
Answer:
4x+2
Step-by-step explanation:
a= 2x - 3 and b= 2x+5
a+b = 2x-3 + 2x+5
Combine like terms
a+b = 4x+2
Answer:
None of these.
Step-by-step explanation:
Let's assume we are trying to figure out if (x-6) is a factor. We got the quotient (x^2+6) and the remainder 13 according to the problem. So we know (x-6) is not a factor because the remainder wasn't zero.
Let's assume we are trying to figure out if (x^2+6) is a factor. The quotient is (x-6) and the remainder is 13 according to the problem. So we know (x^2+6) is not a factor because the remainder wasn't zero.
In order for 13 to be a factor of P, all the terms of P must be divisible by 13. That just means you can reduce it to a form that is not a fraction.
If we look at the first term x^3 and we divide it by 13 we get
we cannot reduce it so it is not a fraction so 13 is not a factor of P
None of these is the right option.