If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.
Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).
The initial PE = mgh₁ and the initial KE = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
Therefore
(KE + PE) ₁ = (KE + PE)₂
Evaluate the given answers.
A) The total mechanical energy of the system increases.
FALSE
B) Potential energy can be converted into kinetic energy but not vice versa.
TRUE
C) (KE + PE)beginning = (KE + PE) end.
TRUE
D) All of the above.
FALSE
Answer:
No, the magnitude of the magnetic field won't change.
Explanation:
The magnetic field produced by a wire with a constant current is circular and its flow is given by the right-hand rule. Since this field is circular with center on the wire the magnitude of the magnetic field around the wire will be given by B = [(\mi_0)*I]/(2\pi*r) where (\mi_0) is a constant, I is the current that goes through the conductor and r is the distance from the wire. If the field sensor will move around the wire with a fixed radius the distance from the wire won't change so the magnitude of the field won't change.
As we know that in order to melt the copper we need to take the temperature of copper to its melting point
So here heat required to raise the temperature of copper is given as

We know that
melting temperature of copper = 1085 degree C
Specific heat capacity of copper = 385 J/kg C
now we have



now in order to melt the copper we know the heat required is

here we know that
L = 205 kJ/kg
now from above formula


now total heat required will be


As we know that

now we have

Answer:
Maximum acceleration will be equal to 
Explanation:
We have given coefficient of kinetic friction 
And coefficient of static friction 
Acceleration due to gravity 
When truck moves maximum force will be equal to 
It is given that half of the weight is supported by its drive wheels
So force required 
From newtons law maximum acceleration will be equal to 