Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N
Answer:
B. Electromagnetism is the forces and fields associated with charge.
Answer:
This is worded strangely.
Answer:
0.78 m
Explanation:
By the conservation of energy, the energy that they gain from potential energy, must be equal to the kinetic energy. So, for Adolf:
Ep = Ek
ma*g*ha = ma*va²/2
Where ma is the mass of Adolf, g is the gravity acceleration (10 m/s²), ha is the height that he reached, and va is the velocity. So:
100*10*0.51 = 100*va²/2
50va² = 510
va² = 10.2
va = √10.2
va = 3.20 m/s
Before the push, both of them are in rest, so the momentum must be 0. The system is conservative, so the momentum after the push must be equal to the momentum before the push:
ma*va + me*ve = 0, where me and ve are the mass and velocity of Ed. So:
100*3.20 + 81ve = 0
81ve = 320
ve = 3.95 m/s
By the conservation of energy for Ed:
me*g*he = me*ve²/2
81*10*he = 81*(3.95)²/2
810he = 631.90
he = 0.78 m
The answer is c to take a pictures with the camera in the metal hall