Check the picture below.
so the area of the hexagon is really just the area of two isosceles trapezoids.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ a=2\\ b=4\\ h=2 \end{cases}\implies \begin{array}{llll} A=\cfrac{2(2+4)}{2}\implies A=6 \\\\\\ \stackrel{\textit{twice that much}}{2A = 12} \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D2%5C%5C%20b%3D4%5C%5C%20h%3D2%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B2%282%2B4%29%7D%7B2%7D%5Cimplies%20A%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwice%20that%20much%7D%7D%7B2A%20%3D%2012%7D%20%5Cend%7Barray%7D)
Step-by-step explanation:
a+(a+60)=760
a=adult tickets
a+60=student tickets
a+a+60=2a+60
2a+60=760
-60 -60
2a=700
÷2. ÷2
a=350
350 adult tickets
Answer:
<u>Statements (1) and (2) TOGETHER are NOT sufficient.</u>
Explanation:
As in the equation (327)(510)(z) = (58)(914)(xy) there are THREE variables in total i.e. "x", "y" and "z" hence minimum three equations are required to find out values of all variables. Hence,
If the given number of equations is equal to total variable used in any of the equation, values of all the variables can be find out otherwise there can be unlimited number of solutions.
So, value of "x" cannot be determined with the given data.