The mass of radioactive material remaining after 50 years would be 48.79 kilograms
<h3>How to determine the amount</h3>
It is important to note that half - life is the time it takes for the amount of a substance to reduce by half its original size.
Given the radioactive decay formula as
m(t)=120e−0.018t
Where
t= 50 years
m(t) is the remaining amount
Substitute the value of t


Find the exponential value
m(t) = 48.788399
m(t) = 48.79 kilograms to 2 decimal places
Thus, the mass of radioactive material remaining after 50 years would be 48.79 kilograms
Learn more about half-life here:
brainly.com/question/26148784
#SPJ1
Answer: Disagree. 1 in 8 bars are cinnamon.
Step-by-step explanation:
There are a total of 8 bars in the pack. Cinnamon is 1 of the 8. Therefore, for every 8 bars, one is cinnamon.
Answer: the value of the account after 6 years is $101559.96
Step-by-step explanation:
If $64,000 is invested in an IRA account, then
Principal = $64,000
So P = 64,000
The rate at which $64000 was compounded is 8%
So r = 8/100 = 0.08
If it is compounded once in a year, this means that it is compounded annually (and not semi annually, quarterly or others). So
n = 1
We want to determine the value of the account after 6 years, this means
time, t = 6
Applying the compound interest formula,
A = P(1 + r/n)^nt
A = amount after n number of years
A = 64000( 1 + 0.08/1)^1×6
A = 64000(1.08)^6
A= 64000×1.58687432294
A= 101559.956668416
Approximately $101559.96 to 2 decimal places
Answer:
90
Step-by-step explanation:
9*6=54
54*5= 270
270/3=90
What do you exactly need help with?