Answer:
Explanation:
a ) The earth rotates by 2π radian in 24 x 60 x 60 s
so angular speed ( w ) = 2π / (24 x 60 x 60) = 7.268 x 10⁻⁵ rad / s
b ) Linear speed of city of Arlington ( v ) = w r = w R Cosλ where R is radius of the earth and λ is latitude .
v = 7.268 x 10⁻⁵ x 6.371 x 10⁶ cos 32.7357
389.5 m /s
acceleration = w² r = w² R Cos 32.7357
= (7.268 x 10⁻⁵ )² x 6.371 x 10⁶ x cos 32.7357
=283.08 x 10⁻⁴ m/s²
c) velocity ratio =
w r /w R =
R cos 32.73/ R
= Cos 32.73
= 0.84 .
Answer:
<h2>3.0 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

From the question we have

We have the final answer as
<h3>3.0 m/s²</h3>
Hope this helps you
Answer:
Approximately
.
Explanation:
This question suggests that the rotation of this object slows down "uniformly". Therefore, the angular acceleration of this object should be constant and smaller than zero.
This question does not provide any information about the time required for the rotation of this object to come to a stop. In linear motions with a constant acceleration, there's an SUVAT equation that does not involve time:
,
where
is the final velocity of the moving object,
is the initial velocity of the moving object,
is the (linear) acceleration of the moving object, and
is the (linear) displacement of the object while its velocity changed from
to
.
The angular analogue of that equation will be:
, where
and
are the initial and final angular velocity of the rotating object,
is the angular acceleration of the moving object, and
is the angular displacement of the object while its angular velocity changed from
to
.
For this object:
, whereas
.
The question is asking for an angular acceleration with the unit
. However, the angular displacement from the question is described with the number of revolutions. Convert that to radians:
.
Rearrange the equation
and solve for
:
.
Answer:
Mechanical Advantage = Output Force/Input Force
Velocity Ratio = Driving Gear/Driven Gear
Explanation: