Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
Given:
A cylindrical container closed of both end has a radius of 7cm and height of 6cm.
Explanation:
A.) Find the total surface area of the container.
- A = 2πrh + 2πr²
- A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
- A = 263.76 + 307.72
- A = 571.48
B.) Find the volume of the container.
- V = πr²h
- V = (3.14)(7×7)(6)
- V = 923.16
Not sure huhuness.
#CarryOnLearning
Answer:
D) 11 m/s
Explanation:
The problem asks us to calculate the velocity of the hot dog with respect to the observer stationary outside the train. This velocity is given by:

where
is the velocity of the train (towards right)
is the velocity of the man (towards right)
is the velocity of the hot-dog (towards left, so we put a negative sign)
Substituting the numbers into the equation, we find

and the positive sign means the velocity is toward right.
Answer:
1. The magnet is magnetic and can attract iron articles.
2. The magnet has magnetic poles. Each magnet has two kinds of poles: N pole and S pole. They are in pairs.
3. Temporary magnet and permanent magnet: when the ferromagnetic material is magnetized, it is easy to lose the magnetic property, which is called temporary magnet (for example: iron); when the ferromagnetic material is magnetized, it is not easy to lose the magnetic property, which is called permanent magnet (for example: steel).
4. When two magnets are close to each other, the same poles will repel and push away from each other, and the different poles will attract and stick to each other. Therefore: the same pole repels each other, the different pole attracts each other.
5. The attraction of a magnetic object is called magnetism. An object is surrounded by a magnetic material. The area affected by the magnetic force is called the magnetic field.
The two forces should be equal therefore:
2.10 * Fa = Fa + 2 * F * cos 18
simplifying the right side:
2.10 * Fa = Fa + 1.902 * F
1.10 Fa = 1.902 F
<span>F / Fa = 0.578</span>