Answer:
The probability Democrat is selected given that this member favors some type of corporate tax reform is 0.6309.
Step-by-step explanation:
Let us suppose that,
R = Republicans
D = Democrats
I = Independents.
X = a member favors some type of corporate tax reform.
The information provided is:
P (R) = 0.27
P (D) = 0.56
P (I) = 0.17
P (X|R) = 0.34
P (X|D) = 0.41
P (X|I) = 0.25.
Compute the probability that a randomly selected member favors some type of corporate tax reform as follows:

The probability that a randomly selected member favors some type of corporate tax reform is P (X) = 0.3639.
Compute the probability Democrat is selected given that this member favors some type of corporate tax reform as follows:

Thus, the probability Democrat is selected given that this member favors some type of corporate tax reform is 0.6309.
<u>Let's consider the facts at hand</u>:
- By Vertical Angle Theorem ⇒ ∠BCE = ∠DCF
- ∠BEC = ∠DFC
- Sides BE = DF
<u>Based on the diagram, triangles BCE and triangles DCF are similar</u>
⇒ based on the Angle-Angle theorem
⇒ since ∠BCE = ∠DCF and ∠BEC = ∠DFC
⇒ the two triangles are similar
Hope that helps!
<em>Definitions of Theorem I used:</em>
- <u><em>Vertical Angle Theorem: </em></u><em>opposite angles of two intersecting lines must be equal</em>
- <u><em>Angle-Angle Theorem:</em></u><em> if two angles of both triangles are equal, then the given triangles must be similar</em>
<em />
Answer:
the answer is 40
Step-by-step explanation:
micah is 40
B- Not sure if it's a line
C- y=(-x/2)-6
D- y=4x-12
E- y=(2/5)x-10