Answer:
The scalar factor is 4/3
Step-by-step explanation:
The bottom of triangle B is 16 units, the bottom of triangle A is 12 units. So to find the scalar factor you have to divide B by A:
6/12=4/3
Answer:
yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehcsacasvavadvadvsdvsdvsdvdvdvyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
Step-by-step explanation:
Answer:
Answer:
As x→∞ , f(x)→-∞
As
x→-∞ , f(x)→∞
Step-by-step explanation:
End behavior is determined by the degree of the polynomial and the leading coefficient (LC).
The degree of this polynomial is the greatest exponent, or
3
.
The leading coefficient is the coefficient of the term with the greatest exponent, or
2
.
For polynomials of even degree, the "ends" of the polynomial graph point in the same direction as follows.
Even degree and positive LC:
As x→∞ , f(x)→∞ As x→∞, f(x)→∞
Even degree and negative LC:
As x→−∞ , f(x)→−∞
As
x→∞ , f(x)→−∞
Answer:
n (aub)= n (a)+ n(b)
n (anb) = n (a)-n (b)
only a= n(a)+n(b) -(aub)
n only b= n (a)+n (b)-n (anb)
now solve your self because this formula help to solve