1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
7

Brent biked 800 meters on Friday. On​ Saturday, he biked 3 kilometers. On​ Sunday, he biked 2 kilometer​s, 600 meters. How many

kilometers did Brent bike over the three​ days
Mathematics
1 answer:
DochEvi [55]3 years ago
3 0

Answer:

333

Step-by-step explanation:

You might be interested in
Solve the equation 5(2x -3) = 15
Georgia [21]

Answer:

x=3

Step-by-step explanation:

5(2x-3)=15

10x-15=15

10x=30

x=3

6 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is the length of the hypotenuse? If necessary, round to the nearest tenth.
exis [7]

Answer:

<h2><u><em>3.5 Km</em></u></h2>

Step-by-step explanation:

the length of the hypotenuse is 4 Km, it is probable that you are looking for the value of the cathetus a.

it is a right triangle and we use Pythagoras

a² = 4² - 2²

a² = 16 - 4

a² = 12

a = √12

a = 3.46 (round 3.5)

4 0
2 years ago
[ANSWER ASAP PLEASE] Which point is a reflection of across the x-axis? A. point A B. point B C. point C D. point D E. point E​
Alex_Xolod [135]

Answer:

Point C

Step-by-step explanation:

We want to reflect across the x axis

That means the y coordinate changes sign

Z = ( 5 1/2 , 3)

Z' = ( 5 1/2 , -3)

That is point C

8 0
3 years ago
A code is to be made by arranging 7 letters. Three of the letters used will be the letter A, two of the letters used will be the
yuradex [85]

Answer: 420 different codes are possible.

Step-by-step explanation:

The number of possible codes can be given by

N = n!/(ra! × rb! × rc! × rd!)

Where;

n is the total number of letters in the code.

ra,rb,rc and rd are number of occurrence of A,B,C and D respectively

Given: n= 7, ra=3, rb=2, rc=1, rd=1.

Substituting the values, we have.

N = 7!/(3!×2!×1!×1!)

N = 5040/12

N= 420

7 0
3 years ago
Other questions:
  • Select the choice that translates the following verbal phrase correctly to algebra: y less than 21
    9·2 answers
  • Select all that apply.
    12·2 answers
  • 11. Jillian needs to make a group of 5 people. She has 10 Democrats, 13 Republicans, and 7 Independents to choose from. (a) What
    9·1 answer
  • I need help? if someone could please help me that would be awesome.
    13·2 answers
  • What is solution to the system of equation
    14·1 answer
  • True or False: The FOIL method is an example of the distributive<br> property.
    9·2 answers
  • Is this correct? If not please help me out.
    14·1 answer
  • Make a sentence with antonyms of<br>go and beatiful​
    12·1 answer
  • There are 280 pieces of fruit in a fruit salad. There are twice as many raspberries as blueberries, three times as many grapes a
    12·1 answer
  • Find x.<br><br><br><br> 8<br> 10<br> 10.5<br> 12
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!