1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
11

a state park charges a $6 entry fee plus $7.50 per night of camping write an algebraic expression for the cost in dollars of ent

ering the park and camping for n nights
Mathematics
1 answer:
I am Lyosha [343]3 years ago
4 0
C=cost
N=nights
C=$7.50n + $6
You might be interested in
Which ratio is equivalent to 9/36 <br> A. 6/9<br> B. 1/2<br> C. 1/3<br> D. 1/4
vodomira [7]
D because divide both sides by nine

5 0
3 years ago
Read 2 more answers
Couldn't write it out so i took a pic of it
olasank [31]

Answer:

4th is the answer

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Pencils come in boxes of 10. How many boxes should Erika buy if she needs 127 pencils
vova2212 [387]
13 boxes can I get brainliest please ❤️
3 0
4 years ago
Read 2 more answers
A. Y=-1/2x+2<br> B. Y=1/2x+2<br> C. Y=-2x-3<br> D. Y=2x-6
hjlf

Answer:

B: Y=1/2×+2 I think that's it

3 0
3 years ago
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
Other questions:
  • The average cholesterol content of a certain brand of eggs is 215 milligrams, and the standard deviation is 15 milligrams. Assum
    8·1 answer
  • What’s the actual distance = yards?
    5·2 answers
  • Express log2 6 + log2 7 as a single logarithm. A. log2 42 B. log2 √ 42 C. log2 7/6 D. log2 6/7
    13·1 answer
  • Which number line shows the solutions to<br> 1/2x – 2 &gt; 0?
    15·1 answer
  • Reflect the polygon, K(-4, 6), L(-2, -2), M(6, -1), N(8, 7); y=-1
    8·1 answer
  • Louis wants to make a scale drawing of his bathroom. The room is 12 feet long by 8 feet wide. If he uses a scale of 1cm = 4ft, h
    7·1 answer
  • Find the 59th term of the following arithmetic sequence.<br> 5, 13, 21, 29,
    12·1 answer
  • 2
    9·2 answers
  • C ^ 5 * c ^ 3 * c ^ 3​
    5·2 answers
  • Suppose R = {1,3,5,7,9,11,13,15,17} and D={3,6,9,12,15,18,21,24,27} r d
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!