Answer:
- 9
Step-by-step explanation:
2/3 x - 4 = -2
2/3 x = -2+4
x = 6 * (-3/2)
9 = -9
Answer: x=14 and y=5
Work:
Answer:
3/16
Step-by-step explanation:
2^-4 = 1/2^4 = 1/16
Incomplete question. However, let's assume this are feasible regions to consider:
Points:
- (0, 100)
- (0, 125)
- (0, 325)
- (1, 200)
Answer:
<u>Maximum value occurs at 325 at the point (0, 325)</u>
<u>Step-by-step explanation:</u>
Remember, we substitute the points value for x, y in the objective function P = 2x + 1.5y.
- For point (0, 100): P= 2(0) + 1.5 (100) =150
- For point (0, 125): P= 2(0) + 1.5 (125) =187.5
For point (0, 325): P= 2(0) + 1.5 (325) = 487.5
For point (1, 200): P= 2(1) + 1.5 (200) = 302
Therefore, we could notice from the above solutions that at point (0,325) we attain the maximum value of P.
Answer:
<em>Answer: Quadrant 4</em>
Step-by-step explanation:
<u>Graph of Functions
</u>
Let's analyze the function

To better understand the following analysis, we'll factor y

For y to have points in the first quadrant, at least one positive value of x must produce one positive value of y. It's evident that any x greater than 0 will do. For example, x=1 will make y to be positive in the numerator and in the denominator, so it's positive
For y to have points in the second quadrant, at least one negative value of x must produce one positive value of y. We need two of the factors that are negative. It can be seen that x=-2 will make y as positive, going through the second quadrant.
For the third quadrant, we have to find at least one value of x who produces a negative value of y. We only need to pick a value of x that makes one or all the factors be negative. For example, x=-4 produces a negative value of y, so it goes through the third quadrant
Finally, the fourth quadrant is never reached by any branch because no positive value of x can produce a negative value of y.
Answer: Quadrant 4