1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
9

You start driving north for 7 miles, turn right, and drive east for another 24 miles. At the end of driving, what is your straig

ht line distance from your starting point?

Mathematics
1 answer:
horsena [70]3 years ago
3 0

Answer:

AC = 25\ miles

Step-by-step explanation:

Given:

Distance for north side = 7 miles.

Distance for east side = 24 miles.

We need to find the displacement.

Solution:

Figure shows Point A is starting point and AB = 7 miles is North side distance and BC = 24 miles is east side distance and AC is shown as displacement.

Using Pythagoras theorem to find displacement (AC).

(AC)^{2}=(AB)^{2}+(BC)^{2}

Substitute AB = 7 and BC = 24 in above equation.

(AC)^{2}=(7)^{2}+(24)^{2}

(AC)^{2}=49+576

(AC)^{2}=625

AC = \sqrt{625}

AC = 25\ miles

Therefore, displacement of the car AC = 25\ miles

You might be interested in
How can you represent a relationship between two quantities?
Murrr4er [49]
By the graph of a straight line through the origin with a slope equal to the unit rate
5 0
3 years ago
What is 12x-32 answer needed
Rudik [331]

Answer:

plz Mark me brainliest

7 0
3 years ago
if A= (-1, -3) and B= (11, -8) what is the length of AB A) 14 units B) 11 units C) 13 units D) 12 units
Anastasy [175]
Distance is the formula : 

DAB = \sqrt{(xA - xB)^2  + (yA - yB)^2}
 
so 

\sqrt{(-1 - 11)^2 + (-3 + 8)^2}

= 13 

Answer is C)


5 0
3 years ago
Alexis has a rectangular piece of red paper that is 4 centimeters wide. it's length is twice it's width. she glues a rectangular
Sergio039 [100]
The area of the red piece of paper is A= 4(2*4)= 4*8= 32 in^2.
The area of the blue piece of paper is A= 3*7=21 in^2. You subtract 21 from 32 and the difference is 11. So 11in^2 is visible.
5 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • For which acute angle are the sine of the angle and cosine of the angle equal?
    13·2 answers
  • 108=-12 - 4 (-5n+7)I need help
    6·1 answer
  • Which of the following expressions is written in scientific notation?
    9·2 answers
  • Help quick ! a.B.C.D ??
    7·1 answer
  • If the variance is 28 kg2 what is the standard deviation?
    10·1 answer
  • 6+8x/2=5x what does x =
    9·2 answers
  • Determine the point estimate of the population proportion, the margin of error
    14·1 answer
  • Please help giving BRAINLYEST
    14·2 answers
  • Y= 2? + 16x + 64<br> 1. Identify a, b, and c<br> b=<br> C=
    7·1 answer
  • Frankie is saving up to have spending money for her family vacation. If Frankie's current monthly net pay is $490.00 and her mon
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!