Answer:# 1 is salt #2 is fresh #3 fresh #4 salty
Explanation:
Answer:
Cytochrome c is an enzyme found in bacteria, fungi, plants and animals. Here it is given that the human amino acid sequence for cytochrome c differs at 12 locations from the sequence in horses and pigeons. This information might be useful for inferring in preliminary stages that horses and pigeons are closely related to each other since they both show similar amount of difference from humans.
However, this hypothesis is being made with respect to the the comparison between "humans and horses" and "humans and pigeons". To further test this hypothesis pigeons and horses should be directly compared to each other without the use of a third species like humans. Hence, the sequence for cytochrome c in horse and pigeon should be compared with each other rather than comparing to humans.
A line graph where the x axis is time and the y is velocity.
Be sure to include increments of measurements.
Answer:
There are many points at which eukaryotic gene expression can be controlled, through pretranscriptional control, transcriptional control, and posttranscriptional control
Explanation:
The pretranscriptional control determines the accessibility of chromatin to the transcription machinery. It is affected by supercoiling and methylation. It is also known as epigenetic regulation, and it does not depend on the sequence but on the conformation of the DNA.
While transcriptional control determines the frequency and / or speed of transcription initiation through the accessibility of the start sites, the availability of transcription factors and the effectiveness of promoters.
The post-transcriptional control is the one that is exercised once the transcript has finished synthesizing. It can be of several types:
• Maturation control: As the RNA adjustment can be made.
• Transport control: Most RNA has to go out to the cytoplasm to perform its function. For this they have to cross the pores of the nuclear membrane, where you can select the RNAs that will be transported and those that will not.
• Stability control: The half-life of RNA can be regulated by the expression of RNAs or mRNA stabilizing proteins in the cytoplasm.
• Translational control: It is exercised on the frequency with which the mRNAs begin to be translated. It can also affect the frequency with which proteins mature and the availability of enzymatic effectors.
A. Atoms with an ironic bonds