Answer:
General Formulas and Concepts:
<u>Symbols</u>
- e (Euler's number) ≈ 2.71828
<u>Algebra I</u>
- Exponential Rule [Multiplying]:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Property [Multiplied Constant]:
U-Substitution
- U-Solve
Integration by Parts:
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Exponential Rule - Multiplying]:
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-solve.</em>
- Set <em>u</em>:
- [<em>u</em>] Differentiate [Basic Power Rule]:
- [<em>u</em>] Rewrite:
- [<em>du</em>] Rewrite:
<u>Step 4: Integrate Pt. 3</u>
- [Integral] U-Solve:
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
- [Integral] Simplify:
- [Integrand] U-Solve:
<u>Step 5: integrate Pt. 4</u>
<em>Identify variables for integration by parts using LIPET.</em>
- Set <em>u</em>:
- [<em>u</em>] Differentiate [Basic Power Rule]:
- Set <em>dv</em>:
- [<em>dv</em>] Exponential Integration:
<u>Step 6: Integrate Pt. 5</u>
- [Integral] Integration by Parts:
- [Integral] Exponential Integration:
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
- Simplify:
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e