Answer:
0.41
Explanation:
given,
mass of the car, m = 2290 Kg
initial speed = 10.5 m/s
mass of another car, M = 2780 Kg
distance moved = 2.80 m
coefficient of friction = ?
conservation of energy
m u = (M + m) V
2290 x 10.5 = (2290 + 2780) V
V = 4.74 m/s
using equation of motion
v² = u² + 2 a s
4.74² = 2 x a x 2.8
a = 4.02 m/s²
now using equation
a = μ g
4.02 = μ x 9.8
μ = 0.41
Answer:
heat and power
Explanation:
is the simultaneous production of electricity and heat both of which are used
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:

Explanation:
We know that impedance of a RLC circuit is given by 
So
here R is resistance
is inductive reactance and
is capacitive reactance
To minimize the impedance
should be zero we know that 
So 


We know that 
So 

Where f is resonance frequency
Answer:
Explanation:650
colour* wavelength (nm) energy (eV)
red 650 1.91
orange 600 2.06
yellow 580 2.14
green 550 2.25