1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
7

The price of oranges went from $.90 per lb to $1.20 per lb in five years. Find the rate of change of the price of oranges.

Mathematics
1 answer:
lakkis [162]3 years ago
4 0
Rate is an expression for a change of some unit per unit of time. For this problem, we find the rate of change of the price by a simple equation which is expressed as: 

Rate = change in price / change in time
Rate = ($1.20/lb - $0.90/lb) / 5 yrs - 0
Rate = $0.06 per lb per year

Thus, the answer is B.
You might be interested in
3 square root 125/5-8
Ksivusya [100]
The answer is <span>-1.2917960675</span>
4 0
3 years ago
What is the answer to (-3x) + x
Dafna11 [192]
I'm pretty sure it's -4x. 
5 0
2 years ago
Which points define the solution set of this linear-quadratic system of equations?
mezya [45]
The answer is a.
Point A and point B
7 0
3 years ago
Read 2 more answers
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
BRAINLEST ANSWER!!
Elanso [62]

Answer: -2a,-2b

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • cream cheese costs £3.60 for 1kg. Robbie buys a pot of ice cream cheese for 90p. How many grams of cream cheese does he buy?
    5·2 answers
  • Jane sells 8 times as many Volvos as Melissa. If the difference in their sales is 35, how many cars did Jane sell?
    10·1 answer
  • How do you balance this?<br> Al + CuCl2 = AlCl3 + Cu
    10·1 answer
  • Expand and reduce:<br> A = – 3 (5 x – 4)<br> B = (2 x – 8) (4 x – 7)
    14·1 answer
  • How many orders of fried chicken
    12·2 answers
  • HELPP ITS MY LAST QUESTION AND IM TIMED
    13·1 answer
  • Express the ratio in its simplest form 1\4:1\8:1\16​
    5·1 answer
  • There are 96 girls and 72 boys who want to participate in 6th grade intramurals.
    6·1 answer
  • Una torre de 28.2 m de altura esta situada a la orilla de un rio, desde lo alto del edificio el ángulo de depresión a la orilla
    9·1 answer
  • DIVIDE and show SOLUTION - <br> 2x^3 - 6x^2 + 5x + 4 by ( x - 2 )
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!