1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
3 years ago
13

A centipede has ______ legs

Mathematics
2 answers:
dezoksy [38]3 years ago
7 0

100 legs. hope it helps!

ch4aika [34]3 years ago
5 0
The average centipede have 100 legs
You might be interested in
Select the correct answer.
andrew-mc [135]

Answer:

v=\sqrt{\frac{E}{m}}

Step-by-step explanation:

The formula is given as:

E=mv^2

We need to solve this formula for v, that means that v to one side and let it be solved in terms of the other variables (E and m). First, we isolate v:

E=mv^2\\\frac{E}{m}=\frac{mv^2}{m}\\\frac{E}{m}=v^2

To isolate v, and eliminate the "square", we need to take square roots of both sides, that will give us v in terms of the other variables:

\frac{E}{m}=v^2\\\sqrt{\frac{E}{m}}=\sqrt{v^2}\\\sqrt{\frac{E}{m}}=v

Putting v to left side (convention), we finally have:

v=\sqrt{\frac{E}{m}}

7 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
identify the amplitude and period of the function then graph the function and describe the graph of G as a transformation of the
mrs_skeptik [129]

Given the function:

g(x)=cos4x

Let's find the amplitude and period of the function.

Apply the general cosine function:

f(x)=Acos(bx+c)+d

Where A is the amplitude.

Comparing both functions, we have:

A = 1

b = 4

Hence, we have:

Amplitude, A = 1

To find the period, we have:

\frac{2\pi}{b}=\frac{2\pi}{4}=\frac{\pi}{2}

Therefore, the period is = π/2

The graph of the function is shown below:

The parent function of the given function is:

f(x)=cosx

Let's describe the transformation..

Apply the transformation rules for function.

We have:

The transformation that occured from f(x) = cosx to g(x) = cos4x using the rules of transformation can be said to be a horizontal compression.

ANSWER:

Amplitude = 1

Period = π/2

Transformation = horizontal compression.

8 0
1 year ago
Please help 20 points
irinina [24]
The answer would be 10
7 0
2 years ago
Read 2 more answers
HELPLSPLSPLPSLPSLPSL
babunello [35]

Answer:

25.5

Step-by-step explanation:

first find the area od the rectangle than the triangle.

to find the area count the number of squares and use A=b*h

than do the same for the triangle using A=.5*b*h

15=3*5

10.5=.5*3*7

10.5+15=25.5

3 0
2 years ago
Other questions:
  • Which of the following statements is logically equivalent to "If I study, then I get better grades"? If I do not study, then I d
    13·2 answers
  • The volume of a cube is found using the formula l3, where l is the side length. What is the volume of a cube, in cubic feet that
    6·1 answer
  • A flower garden has been designed with an L-shaped walkway and viewing area around two sides as shown.
    9·1 answer
  • Help! :') ..........................................​
    11·2 answers
  • why do I keep getting this in my notifications. How do I stop it. ''Seems like this question's been up for too long and can't be
    5·2 answers
  • F = 2xi+3yj and σ is the cube with opposite corners at (0,0,0) and (3,3,3), oriented outwards. Find the flux of the flow field F
    14·1 answer
  • 5/7 = a/35 what is the answer ?
    7·2 answers
  • PLEASE HELP!! USATESTPREP
    5·1 answer
  • I NEED HELP can. someone help me please
    6·1 answer
  • Please hep me answer this question.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!