Answer:
x = 8
Step-by-step explanation:
3x - 20 = 4
add 20 to both sides
3x - 20 + 20 = 4 + 20
3x = 24
divide both sides by 3
= 
x = 8
The answer to this problem would be about 4 hours
The events A and B are independent if the probability that event A occurs does not affect the probability that event B occurs.
A and B are independent if the equation P(A∩B) = P(A) P(B) holds true.
P(A∩B) is the probability that both event A and B occur.
Conditional probability is the probability of an event given that some other event first occurs.
P(B|A)=P(A∩B)/P(A)
In the case where events<span> A and B are </span>independent<span> the </span>conditional probability<span> of </span>event<span> B given </span>event<span> A is simply the </span>probability<span> of </span>event<span> B, that is P(B).</span>
Statement 1:A and B are independent events because P(A∣B) = P(A) = 0.12. This is true.
Statement 2:<span>A and B are independent events because P(A∣B) = P(A) = 0.25.
This is true.
Statement 3:</span><span>A and B are not independent events because P(A∣B) = 0.12 and P(A) = 0.25.
This is true.
Statement 4:</span><span>A and B are not independent events because P(A∣B) = 0.375 and P(A) = 0.25
This is true.</span>
Slope of line = tan(120) = -tan(60) = - √3
Distance from origin = 8
Let equation be Ax+By+C=0
then -A/B=-√3, or
B=A/√3.
Equation becomes
Ax+(A/√3)y+C=0
Knowing that line is 8 units from origin, apply distance formula
8=abs((Ax+(A/√3)y+C)/sqrt(A^2+(A/√3)^2))
Substitute coordinates of origin (x,y)=(0,0) =>
8=abs(C/sqrt(A^2+A^2/3))
Let A=1 (or any other arbitrary finite value)
solve for positive solution of C
8=C/√(4/3) => C=8*2/√3 = (16/3)√3
Therefore one solution is
x+(1/√3)+(16/3)√3=0
or equivalently
√3 x + y + 16 = 0
Check:
slope = -1/√3 .....ok
distance from origin
= (√3 * 0 + 0 + 16)/(sqrt(√3)^2+1^2)
=16/2
=8 ok.
Similarly C=-16 will satisfy the given conditions.
Answer The required equations are
√3 x + y = ± 16
in standard form.
You can conveniently convert to point-slope form if you wish.