I got shot in the Hebrew morning I was going on the same day lol I was going on the balls in
Answer:
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Step-by-step explanation:
There is a random binomial variable
that represents the number of units come off the line within product specifications in a review of
Bernoulli-type trials with probability of success
. Therefore, the model is
. So:
![P (X < 9) = 1 - P (X \geq 9) = 1 - [{15 \choose 9} (0.91)^{9}(0.09)^{6}+...+{ 15 \choose 15}(0.91)^{15}(0.09)^{0}] = 0.0002](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%209%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%209%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%209%7D%20%280.91%29%5E%7B9%7D%280.09%29%5E%7B6%7D%2B...%2B%7B%2015%20%5Cchoose%2015%7D%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0002%20)
![P (X < 10) = 1 - P (X \geq 10) = 1 - [{15 \choose 10}(0.91)^{10}(0.09)^{5}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0013](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2010%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2010%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2010%7D%280.91%29%5E%7B10%7D%280.09%29%5E%7B5%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0013%20)
![P (X < 11) = 1 - P (X \geq 11) = 1 - [{15 \choose 11}(0.91)^{11}(0.09)^{4}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0082](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2011%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2011%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2011%7D%280.91%29%5E%7B11%7D%280.09%29%5E%7B4%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0082)
![P (X < 12) = 1- P (X \geq 12) = 1 - [{15 \choose 12}(0.91)^{12}(0.09)^{3}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0399](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2012%29%20%3D%201-%20P%20%28X%20%5Cgeq%2012%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2012%7D%280.91%29%5E%7B12%7D%280.09%29%5E%7B3%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0399%20)
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Answer:
the log function is the "inverse" function of an exponential function
by definition
then 
in this problem you have 
thus what x solves this ?
the answer is 
thus (100,2)
B) the x intercept is when y = 0

x intercept at (1,0)
C) at 100, the curve will hit y = 5000
Step-by-step explanation:
Answer:
P + M = 30
700P + 200M = 15000
Number of laser printers = 18
Number of color monitors = 12
Step-by-step explanation:
Let P = number of laser printers
Let M = number of color monitors
Given total number of boxes = 30
⇒ P + M = 30
Given:
- $700 = cost of laser printer
- $200 = cost of color monitor
- $15000 = total cost of order
⇒ 700P + 200M = 15000
Rewrite P + M = 30 to make P the subject:
⇒ P = 30 - M
Substitute into 700P + 200M = 15000 and solve for M:
⇒ 700(30 - M) + 200M = 15000
⇒ 21000 - 700M + 200M = 15000
⇒ 500M = 6000
⇒ M = 12
Substitute found value for M into P = 30 - M and solve for P:
⇒ P = 30 - 12 = 18
Y = 3x − 8. What is the slope of the equation?
C. 3