Answer:
∴ MNOP is Rectangle
midpoint of XY (N) : (a , - 2b)
Step-by-step explanation:
W (0 , 4b) X ( 2a , 0) Y (0 , -4b) Z (-2a , 0)
M (midpoint of WX) : ( (0 + 2a)/2 , (4b + 0)/2) i. e. (a , 2b)
N (midpoint of XY) : ( (2a + 0)/2 , (0 - 4b)/2) i. e. (a , - 2b)
O (midpoint of YZ) : ( (0 - 2a)/2 , (- 4b + 0)/2) i. e. (- a , - 2b)
P (midpoint of ZW) : ( (0 - 2a)/2 , (4b + 0)/2) i. e. (- a , 2b)
MN: length = 2b + 2b = 4b MN segment perpendicular to x axis (slope undefined)
NO: length = a + a = 2a NO segment parallel to x axis (slope = 0)
OP: length = 2b + 2b = 4b OP segment perpendicular to x axis (slope undefined)
PM: length = a + a = 2a NO segment parallel to x axis (slope = 0)
MN = OP and MN // OP and MN ⊥ PM
NO = PM and NO // PM and NO ⊥ OP
∴ MNOP is Rectangle
midpoint of XY (N) : (a , - 2b)
please draw graph to prove