4, 5, and 7 are mutually coprime, so you can use the Chinese remainder theorem right away.
We construct a number
such that taking it mod 4, 5, and 7 leaves the desired remainders:

- Taken mod 4, the last two terms vanish and we have

so we multiply the first term by 3.
- Taken mod 5, the first and last terms vanish and we have

so we multiply the second term by 2.
- Taken mod 7, the first two terms vanish and we have

so we multiply the last term by 7.
Now,

By the CRT, the system of congruences has a general solution

or all integers
,
, the least (and positive) of which is 27.
Set up the equation. On a piece of paper, write the dividend (number being divided) on the right, under the division symbol, and the divisor (number doing the division) to the left on the outside. ...
Divide the first digit.
Divide the first two digits.
Enter the first digit of the quotient.
(See image attached for an example)
Answer:
0.63636363636
Step-by-step explanation:
hope that kinda helped (if the answer is wrong please tell me)