1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
5

What is shift y = 5x 3 units up.

Mathematics
1 answer:
alukav5142 [94]3 years ago
8 0
Y=5x+3. because your y axis is moved
You might be interested in
Amy is six years younger than Melody. Two years ago, Melody was three times as old as Amy. How old is Amy now?
Eduardwww [97]

Answer:

14

Step-by-step explanation:

two years ago she was 4 and he is 3 times as old as her which is 12 add the 2 years ago now she is 14

8 0
3 years ago
Read 2 more answers
An airplane pilot fell 370 m after jumping without his parachute opening. He landed in a snowbank, creating a crater 1.5 m deep,
Vikentia [17]

Answer:

he ded

Step-by-step explanation:

\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \tohe no alive  because ⇆ω⇆π⊂∴∨α∈\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to

7 0
3 years ago
Tell whether each function is linear or non-linear. Function A Function B x 0 1 2 3 y 0 1 8 27 y = –x + 5
pogonyaev

Answer:

Please check the explanation.

Step-by-step explanation:

The slope-intercept form of the linear function  

y = mx+b

where

  • m is the slope
  • b is the y-intercept

The graph of y = mx + b is a straight line. Thus, y = mx + b represents a linear function.

<u>Analzing the function y = –x + 5</u>

Given the linear function

y = –x + 5

comparing with the slope-intercept form of linear equation

The slope m = -1

The y-intercept b = 5

Also, the graph of a linear function is a straight line.

Thus,

The function  y = –x + 5 represents  a linear function.

<u>Analzing the Table Function </u>

x        0     1     2     3

y        0     1     8     27

In order to identify whether the given table represents the linear function or not, we need to make sure the given function has a constant change x and y.

If there is a constant change in x and y, then it would be a linear Function otherwise it would not represent a linear function.

There is a constant change in x values.

i.e.

1 - 0 = 1

2 - 1 = 1

3 - 2 = 1

But, there is NOT a constant change in y.

i.e.

1 - 0 = 0

8 - 1 = 7

27 - 8 = 19

It is clear that the table does not have a constant change in y-values.

Therefore, the table function does not represent the linear function

3 0
3 years ago
Someone help please and thank you!!
svlad2 [7]
Https://www.symbolab.com/solver/function-asymptotes-calculator this is a good asymptote calculator
4 0
3 years ago
Solve the following inequality: 6x - 9 ≥ 11x - 17.
Juli2301 [7.4K]

Answer:

x ≤8/5

Step-by-step explanation:

6x - 9 ≥ 11x - 17

Subtract 6x from each side

6x -6x-9 ≥ 11x - 17-6x

-9 ≥ 5x- 17

Add 17 to each side

-9+17≥ 5x - 17+17

8≥ 5x

Divide each side by 5

8/5≥ 5x /5

8/5≥ x

5 0
3 years ago
Other questions:
  • ملی
    5·1 answer
  • Express (0.0006) in engineering notation.
    12·1 answer
  • What is the probability that the first player does not get a blue character?
    13·1 answer
  • A certain company's main source of income is a mobile app.
    15·1 answer
  • Simplify to create an equivalent expression. −5(1−5k)−4(2k+5)\qquad{-5(1-5k)-4(2k+5)}−5(1−5k)−4(2k+5)
    8·2 answers
  • Uma celebrated her birthday with her friends on lask week .She divided the cake into 21 equal parts . Each of her friends have g
    9·1 answer
  • The equation for the graph obtained when the graph of y= 1/x is compressed vertically by a factor of 0.25, translated 4 units ri
    9·1 answer
  • Simplify fully<br>a) 8⁴4d⁵÷2c³d³​
    8·2 answers
  • What is the missing number?*
    12·1 answer
  • A treasure map says that a treasure is buried so that it partitions the distance between a rock and a tree in a 5:9 ratio. Marin
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!