Answer:
(-38) / (-8)
equals 4.75
a negative divided by a negative is always a positive
Step-by-step explanation:
Firstly, you can use the slope and the first point to find a second point:
2 + 1 = x2 and 6 + 5 = y2 because the slope is 5/1.
Next you can write the equation in point-slope form (remember point-slope form is y - y1 = m(x - x1):
y - 11 = 5(x - 3)
Another equation would be B because B is the correct equation if you choose 2 as x2 and 6 as y2.
Hope this helps!
Answer:
a. 
b. 
Step-by-step explanation:
The initial value problem is given as:

Applying laplace transformation on the expression 
to get ![L[{y+y'} ]= L[{7 + \delta (t-3)}]](https://tex.z-dn.net/?f=L%5B%7By%2By%27%7D%20%5D%3D%20L%5B%7B7%20%2B%20%5Cdelta%20%28t-3%29%7D%5D)

Taking inverse of Laplace transformation
![y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20L%5E%7B-1%7D%20%5B%20%5Cdfrac%7B1%7D%7B%28s%2B1%29%7D%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B%28s%2B1%29-s%7D%7Bs%28s%2B1%29%7D%5D%20%2BL%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B1%7D%7Bs%7D-%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%2B%20L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{1}{s+1}] = e^{-t} = f(t) \ then \ by \ second \ shifting \ theorem;](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%3D%20e%5E%7B-t%7D%20%20%3D%20f%28t%29%20%5C%20then%20%5C%20by%20%5C%20second%20%5C%20shifting%20%5C%20theorem%3B)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Bf%28t-3%29%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Be%5E%7B%28-t-3%29%7D%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)

= 
Recall that:
![y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
Then



3 over 5 x minus 15 = 6 over 5 x plus 12
3/5x - 15 = 6/5x +12
-3/5x+3/5x-15=6/5x-3/5x+12 subtraction property
-15=3/5x+12 simplified
-12-15=3/5x+12-12 subtraction property
-27=3/5x simplified
(5/3)(-27)=3/5 (5/3)x multiplicative inverse
-45=x
Answer:
No
Step-by-step explanation:
Do they have common factors?
No which is why they are not able to be simplified further
so no