Answer:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)
Step-by-step explanation:
Solve for u:
(x sin(A) - u cos(A))^2 + (x cos(A) + y sin(A))^2 = x^2 + y^2
Subtract (x cos(A) + y sin(A))^2 from both sides:
(x sin(A) - u cos(A))^2 = x^2 + y^2 - (x cos(A) + y sin(A))^2
Take the square root of both sides:
x sin(A) - u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
-u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) - x sin(A) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or -u cos(A) = -x sin(A) - sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
Answer: u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)
Continuing from the setup in the question linked above (and using the same symbols/variables), we have




The next part of the question asks to maximize this result - our target function which we'll call

- subject to

.
We can see that

is quadratic in

, so let's complete the square.

Since

are non-negative, it stands to reason that the total product will be maximized if

vanishes because

is a parabola with its vertex (a maximum) at (5, 25). Setting

, it's clear that the maximum of

will then be attained when

are largest, so the largest flux will be attained at

, which gives a flux of 10,800.
Associative property of multiplication
(note, ab means a times b)
a(bc)=(ab)c
allows us to move parenthasees around when all multiplying
Little late, but your answer would be 133 pieces of candy corn.
Best of luck.
Answer:
c
Step-by-step explanation:
theres only that one solution