Answer:
Each energy sublevel contains a different number of electrons. For example, sublevel D can contain up to 10 electrons
Explanation:
The atoms are surrounded by propellers that within each propeller there is a certain number of electrons, these electrons jump from orbit to orbit according to the amount of energy they have. The four levels that make up the electronic cloud that surrounds an atom are: s p d f.
When these electrons change orbit or level they release energy in the form of light, which is known as a photon.
I think the correct answer would be Kabuki. It is a Japanese traditional form of theater that is characterized by the heavy make-up worn by the performers. It started during the Edo Period. It is one of the major classical theater in Japan.
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.
Answer:
heart I think also I'm so sorry if I get you this wrong I think membrane not sure tell me what was the right answer but I think membrane.
Answer:
D. the quantity of heat that is required to raise 1 g of the sample by 1*C (kelvin) at a constant pressure.