they channel heat energy directly to the molecules (tiny particles) inside food. Microwaves heat food like the sun heats your face—by radiation. A microwave is much like the electromagnetic waves that zap through the air from TV and radio transmitters
Answer:
C8H18(g) + 12.5O2(g) -> __8__CO2(g) + 9H2O(g) + heat
CH4(g) + _2___O2(g) -> ____CO2(g) + _2___H2O(g) + heat
C3H8(g) + _5___O2(g) -> _3___CO2(g) + __4__H2O(g) + heat
2C6H6(g) + __15__O2(g) -> __12__CO2(g) + __6__H2O(g) + heat
Explanation:
I hope it helps!
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg
Resistance depends on there properties of a wire:
- length (the longer the more resistance)
- area (the less area = more resistance and vise verse more area = less resistance)
- resistivity (the more resistivity the resistance)
Hope this helps :)