Answer:
TELL ME WHY I AM FOCUSED ON THE OTHER PICS MORE THAN THE PROBLEMS
Answer:
The vertex form parabola y = 2( x+4)² -37
Step-by-step explanation:
<u>Step(i):-</u>
Given parabola equation j(x) = 2x² + 8x -5
Let y = 2x² + 8x -5
⇒ y = 2(x² + 2(4x)+(4)²-(4)²) -5
By using (a + b)² = a² +2ab +b²
y = 2(x+4)²- 32 -5
y = 2 ( x-(-4))² -37
<u><em>Step(ii):-</em></u>
The vertex form parabola y = a( x-h)² +k
The vertex form parabola y = 2(x+4)² -37
Answer:
A)

B)

Step-by-step explanation:
<em>x</em> and <em>y</em> are differentiable functions of <em>t, </em>and we are given the equation:

First, let's differentiate both sides of the equation with respect to <em>t</em>. So:
![\displaystyle \frac{d}{dt}\left[xy\right]=\frac{d}{dt}[6]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5Bxy%5Cright%5D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6%5D)
By the Product Rule and rewriting:
![\displaystyle \frac{d}{dt}[x(t)]y+x\frac{d}{dt}[y(t)]=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdt%7D%5Bx%28t%29%5Dy%2Bx%5Cfrac%7Bd%7D%7Bdt%7D%5By%28t%29%5D%3D0)
Therefore:

A)
We want to find dy/dt when <em>x</em> = 4 and dx/dt = 11.
Using our original equation, find <em>y</em> when <em>x</em> = 4:

Therefore:

Solve for dy/dt:

B)
We want to find dx/dt when <em>x</em> = 1 and dy/dt = -9.
Again, using our original equation, find <em>y</em> when <em>x</em> = 1:

Therefore:

Solve for dx/dt:

4/1000 x 3 42/100 = 4/1000 x 3 420/1000 = 3 1680/1000 = 4 680/1000
Answer:
gr8 thx for points btw can i have brainliest
Step-by-step explanation: