1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
noname [10]
3 years ago
14

The cabinet is 30 inches long. the width is half the length. the height of the cabinet is 23 inches long. what is the volume of

the cabinet ?
Mathematics
2 answers:
viva [34]3 years ago
8 0
The formula for volume is l•w•h.
Length=30 width=15 height=23
30x14x23=10350

Answer: 10350
Sergeu [11.5K]3 years ago
6 0

Answer:

10,350‬

Step-by-step explanation:

30*15*23=10,350

You might be interested in
What is the absolute value of 2 and -2?
xeze [42]

If you mean |2-2| then the absolute value is 0

If you are talking about |2| |-2| then the absolute values are 2 and 2

6 0
3 years ago
What is 3.75 as a mixed number in its simplest form
Fittoniya [83]
3\frac{3}{4}
5 0
3 years ago
HELP ASAP!! WILL MARK AS BRAINLIEST IF ANSWERED NOW!!!!
tiny-mole [99]

Answer: She should blend 98 lbs of high-quality beans.

She should blend 72 lbs of cheaper beans

Step-by-step explanation:

Let x represent the number of pounds of high quality beans that she should blend.

Let y represent the number of pounds of cheaper beans that she should blend.

She needs to prepare 170 lbs of blended coffee beans. This means that

x + y = 170

She plans to do this by blending together a high-quality bean costing $4.75 per pound and a cheaper bean at $2.00 per pound. The blend would sell for $3.59 per pound. This means that the total cost of the blend would be 3.59×170 = $610.3. This means that

4.75x + 2y = 610.3 - - - - - - - - - -1

Substituting x = 170 - y into equation 1, it becomes

4.75(170 - y) + 2y = 610.3

807.5 - 4.75y + 2y = 610.3

- 4.75y + 2y = 610.3 - 807.5

- 2.75y = - 197.2

y = - 197.2/-2.75 = 71.9

y = 72 pounds

x = 170 - y = 170 - 71.9

x = 98.1

x = 98 pounds

4 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
20 minute deadline. right answers only.
emmainna [20.7K]
The answer has to be 1
4 0
3 years ago
Other questions:
  • (25 points, please help! Brainliest!) Mrs. Hanger is painting the following picture of an H to hang in the entryway of her home.
    11·1 answer
  • which of the following shows the polynomial below written in decreasing order 5x^3-x+9x^7+4+3x^11 HELLLPPPPPPPPPPPPP a.3x^11+9x^
    5·1 answer
  • Hi. Please help. This is about negative integers. Thanks
    7·1 answer
  • Natasha spent 1\dfrac121 2 1 ​ 1, start fraction, 1, divided by, 2, end fraction hours on the beach. She fell asleep for \dfrac3
    14·1 answer
  • Which is bigger: 78 or 0.78?
    12·2 answers
  • The ratio of men to women in a certain factory is 3 to 4. There are 210 men
    12·1 answer
  • If these two shapes are similar, what is the measure of the missing length z?
    6·1 answer
  • The average score of 100 students taking a statistics final was 70 with a standard deviation of 7. Assuming a normal distributio
    9·1 answer
  • HELP! How do I complete this table?
    8·1 answer
  • 3x squared =118. Solve the equation. Round to the nearest hundredth if necessary.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!